SEL-89-007

PROCEEDINGS OF THE FOURTEENTH ANNUAL
SOFTWARE ENGINEERING WORKSHOP

November 29, 1989

GODDARD SPACE FLIGHT CENTER

Greenbelt, Maryland

I

i

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the
National Aeronautics and Space Administration/Goddard Space Flight Center
(NASA/GSFC) and created for the purpose of investigating the effectiveness of
software engineering technologies when applied to the development of applications
software. The SEL was created in 1977 and has three primary organizational
members:

NASA/GSFC, Systems Development Branch
The University of Maryland, Computer Sciences Department
Computer Sciences Corporation, Systems Development Operation

The goals of the SEL are (1) to understand the software development process in
the GSFC environment; (2) to measure the effect of various methodologies, tools,
and models on this process; and (3) to identify and then to apply successful devel-
opment practices. The activities, findings, and recommendations of the SEL are
recorded in the Software Engineering Laboratory Series, a continuing series of
reports that includes this document.

Single copies of this document can be obtained by writing to

Systems Development Branch
Code 552

Goddard Space Flight Center
Greenbelt, Maryland 20771

(1.4 iii
s794gacl N\ INTENTIONALLY BLANK PRECEDING PAGE BLANK NOT FiLMED

f

AGENDA

FOURTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP
NASA/GODDARD SPACE FLIGHT CENTER
BUILDING 8 AUDITORIUM
NOVEMBER 29, 1989

Summary of Presentations
R. W. Kester (CSC)

Session 1
Topic: Studies and Experiments in the SEL

The Experience Factory: Packaging Software Experience
V.R. Basili (University of Maryland)

Experiences in the SEL — Applying Software Measurement
F.E. McGarry (NASA/GSFC)
S.R. Waligora and T.P. McDermott (CSC)

Evaluation of the Cleanroom Methodology in the SEL
A. Kouchakdjian and V.R. Basili (University of Maryland)
S. Green (NASA/GSFC)

Session 2
Topic: Methodologies

Predicting Project Success from the Saftware Pro;ect Management Process: An Explora-
tory Analysis
M.S. Deutsch (Hughes Aircraft Co)

A Software Environment: Some Surprising Empirical Results
B.I. Blum (APL)

Measurement Based Improvements of Maintenance in the SEL
H.D. Rombach and B.T. Ulery (University of Maryland)
J.D. Valett (NASA/GSFC)

\'
57%3!—”‘“""0“Aw BANK PRECEDING PAGE BLANK NOT FILMED

AGENDA (Cont’d)

Session 3
Topic: Software Reuse

Software, System, and Application Uncertainty and Its Control Through the Engineering
of Saoftware
M. Lehman (Imperial College)

Testing in a Reuse Environment — Issues and Approaches
J.C. Knight (University of Virginia)

Domain-Directed Reuse
C. Braun and R. Prieta-Diaz (Contel)

Using Reverse Engineering and Hypertext to Document an Ada Language System
K. Thackrey (Planning Analysis Corporation)

Session 4
Topic: Testing and Error Analysis

Classification Tree Analysis Using the Amadeus Measurement and Empirical Analysis
System

R.W. Selby, G. James, K. Madsen, J Mahoney, A.A. Porter, and D.C. Schmidt
(U. C. Irvine)

The Jet Propulsion Laboratory’s Experiences with Formal Inspections
M. Bush and J. Kelly (JPL)

The Enhanced Condition Table Methodology for Verification of Fault Tolerant and Other
Critical Software
M. Hecht, K.S. Tso, and S. Hochhauser (SoHaR, Inc.)

Appendix A - Attendees

Appendix B - Standard Bibliography of SEL Literature

vi
5794

[EONUOTO ul P

i\“ ui*

f

SUMMARY OF PRESENTATIONS

Rush Kester, Computer Sciences Corporation

5794

SUMMARY OF THE FOURTEENTH ANNUAL SOFTWARE
ENGINEERING WORKSHOP

On November 29, 1989, approximately 450 attendees gathered in Building 8 at the
National Aeronautics and Space Administration (NASA)/Goddard Space Flight
Center (GSFC) for the Fourteenth Annual Software Engineering Workshop. The
meeting is held each year as a forum for information exchange in the measure-
ment, utilization, and evaluation of software methods, models, and tools. It is
sponsored by the Software Engineering Laboratory (SEL), a cooperative effort of
NASA/GSFC, Computer Sciences Corporation (CSC) and the University of
Maryland. Among the audience were representatives from 10 universities, 22 gov-
ernment agencies, 9 NASA centers, and 83 private corporations and institutions.
Thirteen papers were presented in four sessions:

e Studies and Experiments in the SEL
e Methodologies
e Software Reuse

e Testing and Error Analysis

ESSION 1 - DIES AND EXPE E IN THE SEL

Frank McGarry of GSFC opened the workshop, welcomed attendees, and intro-
duced the first speaker. The first presentation “Packaging Experience for an Im-
proved Process” was given by Victor Basili of the University of Maryland. Basili
indicated that a major purpose of the SEL has been evaluating different technolo-
gies and methods of software development and providing feedback to project man-
agers for improving the process.

SEL studies have been guided by the Goal/Question/Metric paradigm and its corol-
lary, the Improvement paradigm. Each study determines how best to package
experiences for most effective reuse. Reuse of experiences, to date, have generally
been adhoc and informal. However, to maximize the benefit to the organization,
more formality is needed. One problem has been that the goal of projects is to
produce their own items, not to capture, generalize, and communicate experiences
to other projects for reuse. '

R. Kester
CSC

10of 10
5794

PRECEDING PAGE BLANK NOT FILMED

Part of the solution, Basili stated, is the creation of an organization, “the experi-
ence factory,” whose goal is to facilitate transferring experience and products from
producer projects to reuser projects. The raw materials for this factory are plans,
models, products, status, and lessons learned collected throughout each project’s
life cycle. These inputs are processed by the factory and, as appropriate, stored in
an experience base or discarded. The experience factory produces feedback of
comparative project status and reusable items from the experience base. Where it
is not possible to provide automated support, the factory can provide consulting
services. _ B .

Basili believes almost every type of experience can be packaged for reuse. One
major issue is how the “experience factory” should be funded. Whether treated as
overhead or a cost center, over time it should pay for itself within the organization
by improvements in the process or products. Basili ended with the good news that
an organization can start small and expand its experience factory as managers
understand how best to serve the organization.

The second speaker, Frank McGarry, presented “Experiences in the SEL Applying

"

Software Measurement.” The projects developed (in the Flight Dynamics environ-
ment) are medium sized (80K to 100K source lines of code (SLOC)) and average 2
years in duration. Most development is in FORTRAN with 10-15 percent in Ada.
Over the past 14 years, the SEL has collected data including cost, error, product,
methodology, and tools on over 75 projects. There are four areas where the SEL
applies the data collected: understanding the development environment, managing
current projects, planning future projects, and providing rationale for adopting

standards and methodology.

McGarry stated that the first application of data collection, understanding the envi-
ronment, helps the organization identify its strengths and weaknesses and start
building models of the development process. For example, the SEL has found that
the distribution of effort according to milestones differs somewhat between
FORTRAN and Ada. However, there is little difference in distribution of effort by
type of activity. This similarity is due to the significance of environmental factors
that change very slowly.

McGarry used the error model as an example of the second application of data
collection for managing current projects. By monitoring errors during the code and

R. Kester

CsC

20of 10
5794

'

test phase compared to prior projects, a manager can determine whether the
project’s performance was typical or required remedial management actions.
Measurement of computer utilization can also be applied to help manage projects.
For instance, a manager observing abnormally low usage could upon further inves-
tigation uncover problems with lack of requirements definition or resource avail-
ability.

The third application of data collection is for planning future projects. Without
data collected from prior projects, an organization cannot make plans that reflect
its way of doing business. Using models developed from historical data, the SEL
can, given an estimate of project size, predict the effort or cost for the project and
its allocation to the phases of the life cycle. In addition, collected data have been
used to develop other rules-of-thumb relations among various measures.

The fourth application of data collection McGarry described is to provide rationale
for adopting new methodologies or standards. This Improvement paradigm closes
the loop on the measurement process. For example, measurement of software
reuse during experiments with Object-Oriented Development (OOD) has lead the
SEL to incorporate OOD in its development methodology. Data collected during
other experiments has enabled the SEL to put aside unsuccessful tools or methods.
In wrapping up, McGarry pointed to the measurable improvements in the SEL'’s
software productivity and reliability over time as evidence of the benefit of data
collection in the evolution of standards and methodology.

The final speaker in the first session, Ara Kouchakdjian from the University of
Maryland, presented “Evaluation of the Cleanroom Methodology in the SEL.” The
Cleanroom method was conceived at IBM with a goal of producing correct code the
first time. The emphasis is on the use of human evaluation rather than computer
debugging to verify software. The Cleanroom discipline is characterized by the
complete separation of coders and testers. The importance of correctness is em-
phasized by not allowing development to proceed from design to code or from
code to test until all reviewers were convinced of the product’s correctness.

Kouchakdjian described the project used in the Cleanroom experiment as a

33 thousand SLOC production subsystem. The project was staffed by five in-

dividuals spending about half-time on the project. None of the team had prior
R. Kester

CSC

3 of 10
5794

experience using the Cleanroom methodology or on this specific type of applica-
tion. Following 1 month of Cleanroom tréiﬁirig, the project has taken 22 months
and is currently completing system test. The effort that remains is integration with
the rest of the system and acceptance testing.

The Cleanroom project was compared to the typical SEL project by Kouchakdjian.
The Cleanroom project spent 10 percent more of its total effort in design and
2-3 percent less in code and test than the typical SEL project. During coding the
Cleanroom project spent 52 percent of its time reading code versus 15 percent for
typical SEL projects. The error rate for the Cleanroom project was 2.7 per 1000
SLOC versus 6.0 for typical projects. Of the Cleanroom project’s errors, 33 per-
cent were found during code reviews and 54 percent during code reading. The
productivity of the Cleanroom project was 4.9 SLOC per staff-hour versus 2.9
typical in the SEL environment. From these results, Kouchakdjian concluded that
the Cleanroom methodology appears promising, but further work is needed.

— D 1E

Michael Deutsch of Hughes Aircraft presented “Predicting Project Success from
the Software Project Management Process: An Exploratory Analysis.” The goal of
this study was to identify, empirically, the project management factors that most
strongly correlate with project success and those factors that best discriminate be-
tween success and failure. This study proposed a hypothetical model of project
success in which project adversity factors such as size, interfaces, business, and
technical constraints combine with management power factors such as resources,
scope definition, risk management, planning, and user/customer/contractor dia-
logue to form “Net Turbulence.” This “Net Turbulence” parameter determines a
project’s business and/or technical performance. -

In the study, an informal questionnaire was given to available project managers
and senior engineers on 25 completed projects. The projects ranged in size from
25 thousand to 2 million SLOC. The study found that the overall pérception of
project success was based on business rather than technical performance, with a
threshold between perceived success and failure being a 25 to 50 percent overrun
and a 3 to 6 month schedule slip. Deutsch asserted that the driving factor in
determining the degree of project success is the degree to which the user/customer/

R. Kester
CSsC

4 of 10
5794

m

1 IHVI{I

HIF

contractor dialogue produced a mutual agreement that the right problem was being
solved.

Deutsch indicated that factors most highly correlated with project success con-
firmed management theory and anecdotes. One surprising finding was the strength
of “engineering and application expertise of the initial maintenance team” in deter-
mining the success of all projects. This factor ranked first in its correlation with
Business Performance and second in its correlation with Technical Performance.
Deutsch closed with an example that pointed out the potential practical value of
the “Net Turbulence” model. The model identified adversity factors that by them-
selves might lead to project failure but, when coupled with application of appropri-
ate management power factors, often lead to project success.

The second speaker of this session, Bruce Blum of the Applied Physics Laboratory,
presented “A Software Environment, Some Surprising Empirical Results.” Blum
presented observations of information systems development using a program gen-
erator as indicative of how the software process might behave if programming
were eliminated. In this environment, systems would be developed by users, or a
small staff of applications experts, and would continually evolve along with user
needs. The primary system used in the study was the clinical information system
used for cancer treatment at Johns Hopkins University. The size of the system in
1988 was 6600 programs and 1600 tablés, containing 600,000 patient-days of data.

Looking at the growth of the system Blum found it fairly steady, whether the sys-
tem was newly déveloped or mature. This was due to the insatiable nature of
users. After 5 years of use, one-third of the programs and tables are new. By
comparison, while one-third of the programs had been edited, only 7 percent of the
tables required editing, indicating greater stability in the data model. Even with
this large number of changes, only a small maintenance team was required. Very
little computer experience was needed; rather, the individuals became domain ex-
perts through on-the-job training. Blum summarized by noting that with the
difficulty of system implementation removed, inherent individual differences be-
came less important to productivity and that the system became more integrated.

The last speaker of the morning sessions, H. Dieter Rombach from the University
of Maryland, presented “Measurement Based Improvement of Maintenance in the

R. Kester
CsC

5 of 10
5794

SEL.” The goals of this study were to understand and characterize early mainte-
nance and, where possible,'providc feedback to improve the maintenance and de-
velopment processes. This effort studied six satellite attitude systems developed in
FORTRAN using the standard SEL methodology. The systems ranged in size from
37 to 235 thousand SLOC and their development efforts from 3 to 28 staff-years.
The data used in this study were collected from weekly activity reports, change
reports, and subjéctive interviews with maintenance personnel.

In analyzing the types of requests for software changes, Rombach found that while
53 percent were for error corrections, this represented only 27 percent of the effort
(slightly less than one-half that required per adaptation or enhancement request).
The study found no obvious correlation whereby the maintenance effort could be
predicted from the development effort or system size. Not surprisingly, the study
found that changes during maintenance required more time than changes during
development. However, it was surprising to find that this increase was due more
to increased effort to implement and integrate the change than to increased effort
to isolate the problem.

Based on interviews with maintenance personnel, Rombach found that the subject
software was poorly suited to maintenance needs in the following ways: (1) pro-
gram design language (PDL) is redundant with code and inconsistencies just added
confusion, (2) specification of the same information in multiple locations leads to
incomplete changes, and (3) debug output of the form “variable = value” requires
too much familiarity with the code. In closing, Rombach indicated that future
studies will focus on extended maintenance data for these Systems and early main-
tenance of Ada systems.

I = SOFTW

In a more philosophical vein, Manny Lehman of Imperial Collegé presented “Un-
certainty in Computer Applications.” Computer programs can be classified as one
of three types: (1) those completely defined by a specification, (2) those whose
solution need not be exact but merely close enough for a specific problem, and
(3) those that fulfill an application in the real world and whose success is based on
user satisfaction. This third type of program was the focus of this talk.

R. Kester
CSC

6 of 10
5794

<A o | |

Wl

Polim rr

Lehman stated that real world applications continually evolve because the real
world changes and the user’s needs change. Software maintenance is the means of
achieving this evolution. What is maintained is the level of user satisfaction and
the validity of assumptions embedded in the program. Lehman estimated that one
assumption about the real world is embodied in every 10 SLOC. Some of these
assumptions were probably questionable from the start while others were initially
valid but become invalid over time. As a result, execution of real world applica-
tions involves some uncertainty and risk.

Minimizing the risk due to the presence of uncertain assumptions, Lehman con-
cluded, is a professional responsibility. To accomplish this, the software process
must (1) carefully document all assumptions (explicit and implicit) and (2) peri-
odically review assumptions to ensure they continue to be correct and appropriate.

Next John Knight, from the University of Virginia, presented “Testing in a Reuse
Environment - Issues and Approaches.” Testing of parts for a reuse library pre-
sents some unique challenges. Testing a part for one application and testing for
every possible application is significantly different. This additional testing is justi-
fied, provided its cost can be amortized by future instances of reuse.

Knight presented several interesting approaches to testing adaptable parts, such as
Ada generics. Where the design of the part restricts the allowable range of pa-
rameters or relations between parameters, these restrictions can be validated by
the code itself. Where a broad range of parameters is allowed, a program genera-
tor could be created to test the adaptable part across this domain. Where generic
parameters are executable subprograms that must provide specific semantics, vali-
dation cannot generally be automated. Rather, the designer of the adaptable part
should write a specification for the subprogram and define a test procedure for its
validation.

In conclusion, Knight stated that while reuse can have a significant impact on
testing, it doesn’t make testing any easier, as some economic models assume.
However, if one is careful, perhaps the total resources expended can be reduced.

Chris Braun, from Contel, spoke next on “Domain-Directed Reuse.” Domain-

directed reuse is an approach that combines top-down generative reuse with bot-

tom-up compositional reuse. Generative reuse is an approach whereby systems are
R. Kester

CSC

7 of 10
§794

I

generated automatically by specifying a set of parameters that tailor a given
architecture, e.g., a program generator. Compositional reuse occurs when compo-
nents are selected from a library and used to build a system.

The system envisioned by Braun is one that presents the user with a graphic repre-
sentation of a standard architecture for a given application domain, e.g., Com-
mand, Control, and Communications. For each level in the architecture, its
building blocks are represented. Where components exist for a given building
block, the user may select one from the combdnent library. Where no appfopriate
component exists, the user builds one from scratch or by assembling suitable exist-
ing components from lower levels. This new component must conform to the
interface and functional requirements required by the standard architecture. In
this way, the user would be guided through the design process. Braun concluded
by predicting significant long-term gains in effective productivity for system devel-
opment utilizing domain-directed reuse.

The final speaker of this session, Kent Thackrey from Planning Analysis Corpora-
tion, presented “Using Reverse Engineering and Hypertext to Document an Ada
Language System.” When asked to document an existing system (650 modules,
40,000 SLOC), rather than deliver an estimated 2500 pages of documentation, this
project developed interactive documentation using hypertext. Users could traverse
the system, moving up or down the call tree, viewing module descriptions. By
pressing a special key, the module’s source code was displayed. If the module
generated a screen or accessed a file, the screen layout or record descriptions
could be viewed by pressing other special keys.

Thackrey estimated that 60-70 percent of the documentation was automatically
generated by parsing the source. The remaining information was derived by manu-
ally reverse engineering the system. The hypertext documentation met the custom-
er's standards and was well-received and heavily used by the maintenance
personnel. However, the hypertext documentation has not been maintained along
with the system and is becoming less useful, a situation that could be remedied by
better training and automated procedures for mairrlﬂtéinirigw the hypertext
documentation. Thackrey closed by describing enhancements to the hypertext
documentation structure that he felt would extend its usefulness not only for sys-
tem maintenance but for navigation of a reuse library.

R. Kester

csc’

. 8 of 10
5784 s

e

min e all L]

anan

LT i

1

!

= R YSI

Richard Selby, from the University of California at Irvine, presented “Classifica-
tion Tree Analysis Using the Amadeus Measurement and Empirical Analysis Sys-
tem.” The Amadeus System, which is currently being prototyped, provides the
conceptual framework for instrumenting a software development environment. A
software development environment that provides the required Amadeus interfaces
will allow automatic measurement and monitoring of the development process or
its objects. The focus of this presentation was Selby’s experience using metrics-
based classification trees.

The goal of classification tree analysis, Selby stated, is to identify automatically
that small portion of a system’s components that is likely to account for a dispro-
portionately high amount of its cost, and, thus, focus management attention on
development resources. Classification trees can be defined using any combination
of nominal, ordinal, interval, or ratio metrics. Software to assist in the generation
of classification trees from empirical data was studied in trials at GSFC and
Hughes. Selby concluded that these proof of concept studies, which sought to iden-
tify high-cost and error-prone modules, have demonstrated that the automatic gen-
eration of classification trees has merit.

The next speaker, Marilyn Bush of the Jet Propulsion Laboratory (JPL), presented
“The Jet Propulsion Laboratory’s Experiences with Formal Inspections.” Formal
inspections at JPL are based on the technique published by Michael Feigan of IBM
in 1976. Inspections are designed to find, document, fix, and verify defects as
early in the life cycle as possible. At JPL inspections span the life cycle, starting
with system requirements through test procedures. The inspection process is the
same throughout and includes preparation, overview, the actual inspection meet-
ing, rework, and verification.

Bush described inspections as lead by a trained moderator with 3 to 6 peer inspec-
tors who have a vested interest in the product. Each inspector completes a well-
defined checklist specific to the product and phase before the inspection meeting.
The material for an inspection is limited (about 40 pages or 600 SLOC) so that the
meeting lasts no more than 2 hours. The average inspection at JPL consumed
about 28 staff-hours and found 16 defects, including 4 defects that would have

R. Kester
CsC

9 of 10
5794

prevented the system from operating correctly. Bush estimated that each inspec-
tion saved JPL about $25,000.

Bush credited training as essential to the success of inspections at JPL. JPL devel-
oped a 2-hour course for managers that stressed the value of inspections and a
1.5-day course for inspectors and moderators that described the inspection process
and its benefits, and included a simulated inspection. In addition, support and
consultation were provided to projects during their initial use of inspections. Bush
concluded by citing some lessons learned.

The final presentation, “The Enhanced Condition Table Methodology for. Verifica-
tion of Fault Tolerant and other Critical Software,” was given by Myron Hecht of
SoHaR, Inc. This technique is based on a test data selection method described by
Goodenough and Gerhart in 1§7S Therteéhﬁitjliéfirsrexpénsive and is justified only
where severe reliability requirements exist, e.g., critical modules in a nuclear reac-
tor control system. The original technique, which was impractical for programs
over 20 lines, was enhanced in two ways. First, tools were created that automated
condition table generation and assisted in eliminating don’t care test cases. Sec-
ond, the me}hod integrated structural tcrsitjnigr with analysis of functional, reliability,
and safety requirements. |

Hecht described an experiment using the module responsible for the node manager
functions in a highly redundant network. The module was about 150 SLOC and
contained 14 conditions. Without the enhanced method, this would have resulted
in 2**14 combinations. The enhanced condition table contained 50 combinations.
The technique identified one error of omission that Hecht believes would not have
been identified by any other method. To emphasize his belief that no testing
technique by itself is sufficient, Hecht indicated that 14 additional interface and
timing errors were identified by functional testing during integration.

Hecht closed by stating that when additional tools are developed to reduce the
labor and time intensive tasks of creating test cases and test environments, this
technique will be a thorough, traceable, and effective means of performing unit
testing where certification is required.

R. Kester

CSC

10 of 10
5794

L LN L I R N an a

I

b

SESSION 1 — STUDIES AND EXPERIMENTS IN THE SEL

V. R. Basili, University of Maryland

F. E. McGarry, NASA/GSFC
A. Kouchakdjian, University of Maryland

5794

t

1

bl ol

The Experience Factory:
Packaging Software Experience

Victor R. Basili
Institute for Advanced Computer Studies
and
Department of Computer Science
University of Maryland

In order to improve software quality and productivity, we need to build
descriptive models to better understand (1) the nature of the processes and
products and their various characteristics, (2) the variations among them,
(3) the weaknesses and strengths of both, and (4) mechanisms to predict and
control them. Based upon analysis of these descriptive models, we need to
build prescriptive models that improve both the products and the methods
for developing them relative to a variety of qualities, provide feedback
for project control, and allow the packaging of successful experience. We
also need to examine the interaction among these models.

The overall solutions are technical and managerial. The technologies in-
volved include modeling, measurement and reuse.

We have been applying this basic approach for the past 14 years at NASA/GSFC
in a program called the Software Engineering Laboratory (SEL). The activities
were broken into two phases. During the first phase, we worked to understand
the environment and how to measure it. To achieve this we measured what we
could, applied whatever models existed, built baselines for such things as
defect classes and resource allocation, and developed the Goal/Question/Metric
paradigm as an organized mechanism for setting goals and measuring the
software process and product.

During this phase, we learned that although there are similarities among
software developments, the differences are what create the problems; that there
is a direct relationship between the processes performed and the various
product qualities; that measurement needs to be based upon goals and models;
and that evaluation and feedback are necessary for project control.

In phase two we worked to improve the process and product quantitatively based
upon the evolutionary development of various models. To this end, we experi-
mented with technologies, evaluated and fed back information to the project,
developed the Quality Improvement Paradigm which is a variation of the scientific
method tailored to the software domain, began formalizing process, product,
knowledge and quality models for the environment, and continued to evolve the
GQM paradigm and our various models. '

During this phase, we learned that evaluation and feedback are necessary for
learning; that process, product and quality models need to be more formally
defined and tailored for the particular environment; that software development
should follow an experimental approach; that reusing experience in the form of
process, product, and knowledge is essential; and that experience needs to be
packaged.

The Improvement Paradigm consists of six steps:

V. Basili
Univ. of MD
10of 20

il [INANF]

il

-2-

1. Characterize the current project environment.

2. Set up goals and refine them into quantifiable questions and metrics
for successful project performance and improvement over previous project
performances.

3. Choose the appropriate software project execution model for this
project and supporting methods and tools.

4. Execute the chosen processes and cong;ﬁpct the products, collect
the prescribed data, validate it, and analyze the data to provide feedback
in real-time for corrective action on the current project.

5. Analyze the data to evaluate the current practices, determine
problems, record the findings and make recommendations for improvement for
future projects.

6. Package the experience in the form ofrupdéted and refined models
and other forms of structured knowledge gained from this and previous projects,
and save it in an experience base so it can be available to the next project.

The Improvement Paradigm necessitates support for systematic learning and
reuse. Systematic learning requires support for the recording of experience,
off-line generalizing or tailoring of experience, and the formalization of
experience. Systematic reuse requires support for using existing experience
and on-line generalizing and tailoring of candidate experience. Both learning
and reuse need to be integrated into an overall evolution model that supports
them as formal activities.

Reuse has been an elusive for software development. This is due to a number

of factors. First, reuse needs to be defined as more than just the code

level; emphasis on code only limits the context of reuse. Our model covers

the reuse of all forms of experience, e.g., all forms of products and processes.
In the past, reuse of experience has been too informal and not fully incorporated
into the software evolution model. It has been assumed that reuse means using
as 1s. Actually, most experience needs to be modified in some way. There

need to be support mechanisms for this modification process. To make reuse
easier, experience needs to be packaged. It also needs to be analyzed for its
potential for reuse before being offered as reusable. Lastly, the development
and packaging of reusable experience was expected to take place as part of the
project development. Clearly, this is very difficult since the project focus

1s delivery, not reuse.

For these reasons, we propose the concept of an Experience Factory, which is
distinct from the project organization in that it packages experience by
building informal, formal or schematized, and productized models and measures
of various software processes, products, and other forms of knowledge via
people, documents, and automated support. As such, the Experience Factory
supports project development by analyzing and synthesizing all kinds of
experience, acting as a repository of such experience, and supplying that
experience to projects on demand.

V. Basili
Univ. of MD
2 of 20

m L B wn LI miow o | ann e]

-3-

The Experience Factory is a logically and/or physically separate organization
for the project development organization. This is necessary because the
Experience Factory and Project Organizations have different focuses and
priorities, and require different process models and expertise requirements.

There are a variety of different experiences that can be packaged. These
consist of process models, the results of method and techniques evaluation,
resource baselines and models, change and defect baselines and models, product
baselines and models, and products and product parts themselves.

The benefits of the concept of an Experience Factory are: the separation of
concerns from project development, the support for learning and reuse, the
generation of a tangible corporate asset, and the formalization of management
and development technologies. To build an Experience Factory, an organization
can start small by packaging those things it knows well and building via
measurement and models to larger bodies of knowledge. The concept of an
Experience Factory allows us to focus research on the understanding and pack-
aging of those pieces of experience that will aid projects the most.

Aside from the packaging of experience, the Experience Factory can incorporate
other activities such as quality assurance, education and training, and
consulting activities. Funding for the Factory should be a separate cost
center and can come from corporate overhead or projects can be billed for
packages of experience.

In conclusion, combining the concepts of the Improvement Paradigm, the
Goal/Question/Metric Paradigm, and the Experience Factory organization provides
a framework for software engineering development, maintenance, and research
that supports the improvement of quality and productivity in an organized way.
It takes advantage of the experimental nature of software engineering and
allows us to understand how software is built and focused on the problems,
define and formalize models of process and product with respect to success
criteria, and feed back packaged experience to current and future projects for
reuse.

V. Basili
Univ. of MD
3of 20

W -

|

b

iy

¥

VIEWGRAPH MATERIALS
FOR THE
V. BASILI PRESENTATION

5794

=

THE EXPERIENCE FACTORY:
PACKAGING SOFTWARE EXPERIENCE

VICTOR R. BASILI
UMIACS
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

V. Basili
Univ. of MD
4 of 20

HOW DO WE IMPROVE SOFTWARE QUALITY AND PRODUCTIVITY?

WE NEED TO
UNDERSTAND PROCESS AND PRODUCT
DEFINE PROCESS AND PRODUCT QUALITIES
EVALUATE SUCCESSES AND FAILURES
FEEDBACK FOR PROJECT CONTROL
PACKAGE SUCCESSFUL EXPERIENCES

KEY TECHNOLOGIES:
MODEL ING
MEASUREMENT
REUSE

WE NEED TECHNICAL AND MANAGERIAL SOLUTIONS

V. Basili
Univ. of MD
5 of 20

mi]

'l LR moe
L -, M oo M

L J A1

MU,

SEL EVOLUTION

EVOLVING FOR OVER 14 YEARS

PHASE 1
UNDERSTAND WHAT WE COULD ABOUT THE ENVIRONMENT AND MEASUREMENT
MEASURED WHAT WE COULD
USED MODELS WHERE AVAILABLE
BUILT BASELINES AND MODELS
DEVELOPED THE GOAL/QUESTION/METRIC PARADIGM

LEARNED

= THERE ARE FACTORS THAT CREATE SIMILARITIES AND
DIFFERENCES AMONG PROJECTS

= THERE IS A DIRECT RELATIONSHIP BETWEEN PROCESS AND
PRODUCT

= MEASUREMENT NEEDS TO BE BASED ON GOALS AND MODELS

- EVALUATION AND FEEDBACK ARE NECESSARY FOR PROJECT
CONTROL

V. Basili
Univ. of MD
6 of 20

SEL EVOLUTION

PHASE 11
IMPROVE THE PROCESS AND PRODUCT

EXPERIMENTED WITH TECHNOLOGIES

EVALUATED AND FED BACK INFORMATION TO THE PROJECT

DEVELOPED THE IMPROVEMENT PARADIGM

BEGAN FORMALIZING PROCESS, PRODUCT, KNOWLEDGE, AND
QUALITY MODELS

EVOLVED THE GOAL/QUESTION/METRIC PARADIGM

LEARNED

EVALUATION AND FEEDBACK ARE NECESSARY FOR LEARNING
PROCESS, PRODUCT AND QUALITY MODELS NEED TO BE BETTER
_ DEFINED AND TAILORED

SOFTWARE DEVELOPMENT SHOULD FOLLOW AN EXPERIMENTAL
APPROACH -

REUSING EXPERIENCE IN THE FORM OF PROCESS, PRODUCT, AND
KNOWLEDGE 1S ESSENTIAL

EXPERIENCE NEEDS TO BE PACKAGED

V. Basili -
Univ. of MD
7 of 20

"m0

L LU

1.

2,

3.

4,

5.

6.

IMPROVEMENT PARADIGM

CHARACTERIZE THE CURRENT PROJECT ENVIRONMENT,

SET UP GOALS AND REFINE THEM INTO QUANTIFIABLE QUESTIONS
AND METRICS FOR SUCCESSFUL PROJECT PERFORMANCE AND
IMPROVEMENT OVER PREVIOUS PROJECT PERFORMANCES.

CHOOSE THE APPROPRIATE SOFTWARE PROJECT EXECUTION MODEL
FOR THIS PROJECT AND SUPPORTING METHODS AND TOOLS.

EXECUTE THE CHOSEN PROCESSES AND CONSTRUCT THE PRODUCTS,
COLLECT THE PRESCRIBED DATA, VALIDATE IT, AND ANALYZE THE
DATA TO PROVIDE FEEDBACK IN REAL-TIME FOR CORRECTIVE
ACTION ON THE CURRENT PROJECT.

ANALYZE THE DATA TO EVALUATE THE CURRENT PRACTICES,
DETERMINE PROBLEMS, RECORD THE FINDINGS AND MAKE
RECOMMENDATIONS FOR IMPROVEMENT FOR FUTURE PROJECTS.

PACKAGE THE EXPERIENCE IN THE FORM OF UPDATED AND REFINED
MODELS AND OTHER FORMS OF STRUCTURED KNOWLEDGE GAINED

FROM THIS AND PREVIOUS PROJECTS, AND SAVE IT IN AN
EXPERIENCE BASE SO 1T CAN BE AVAILABLE TO THE NEXT PROJECT.

V. Basili
Univ. of MD
8 of 20

Y A NING AN

SYSTEMATIC LEARNING REQUIRES SUPPORT FOR
RECORDING EXPERIENCE
OFF-LINE GENERALIZING OR TAILORING OF EXPERIENCE
FORMALIZING OF EXPERIENCE

SYSTEMATIC REUSE REQUIRES SUPPORT FOR

USING EXISTING EXPERIENCE
ON-LINE GENERALIZING OR TAILORING OF CANDIDATE EXPERIENCE

BOTH LEARNING AND REUSE NEED TO BE INTEGRATED INTO AN
OVERALL SOFTWARE EVOLUTION MODEL

V. Basili
Univ. of MD
9 of 20

i

WHY REUSE HAS BEEN A PROBLEM?

NEED TO REUSE MORE THAN CODE

REUSE OF EXPERIENCE HAS BEEN TOO INFORMAL

REUSE NOT FULLY INCORPORATED INTO THE PROCESS MODEL
EXPERIENCE NEEDS TO BE TAILORED

EXPERIENCE NEEDS TO BE PACKAGED

EXPERIENCE NEEDS TO BE ANALYZED FOR ITS REUSE POTENTIAL

PROJECT FOCUS IS DELIVERY, NOT REUSE

V. Basili
Univ. of MD
10 of 20

PROJECT ORGANIZATION

TAME Process Model
“| construct
characterise > set > select
< ¢«—| methods J *
environment goals & i |
tools snalyse
reuse record
4 formalize >
" g
al informal schematizedproductized €
i PROJECT SPEQIFIC n
1 e
o DPMAIN SPEQIFIC r
r a
SENERAL 1
Experience Base Z

EXPERIENCE FACTORY

V. Basili
Univ. of MD
11 of 20

Wi | . WY my L

P L

e TP

EXPERIENCE FACTORY

LOGICAL AND/OR PHYSICAL ORGANIZATION THAT
SUPPORTS PROJECT DEVELOPMENT BY
ANALYZING AND SYNTHESIZING ALL KINDS OF EXPERIENCE
ACTING AS A REPOSITORY OF SUCH EXPERIENCE
SUPPLYING THAT EXPERIENCE TO VARIOUS PROJECTS ON DEMAND

PACKAGES EXPERIENCE BY BUILDING
INFORMAL, FORMAL OR SCHEMATIZED, AND PRODUCTIZED
MODELS AND MEASURES
OF VARIOUS SOFTWARE PROCESSES., PRODUCTS, AND
OTHER FORMS OF KNOWLEDGE
VIA PEOPLE, DOCUMENTS, AND AUTOMATED SUPPORT

V. Basili
Univ. of MD
12 of 20

EXPERIENCE FACTORY

SEPARATE ORGANIZATIONS
PROJECT ORGANIZATION
EXPERIENCE FACTORY

WHY?
DIFFERENT, FOCUS/PRIORITIES
DIFFERENT PROCESS MODELS
DIFFERENT EXPERTISE REQUIREMENTS

V. Basili
Univ. of MD
13 of 20

L wmy i e M [UIRST] moo [Bl L]

.

.. Mnm

Lo A e e

s oML 11

EXPERIENCE
PROJECT ORGANIZATION FACTORY

needs and characteristics
< of previous projects
characterizing ——FF0—00u —>
(tailored to current project)
active reuse of previous plans
for construction and analysis
planning ¢ , >
plans for construction and analysis
(tailored to project characteristics)
construction plans,
i thods,
construction l toole g Methods
(according to some —>
construction model) new products
Lot |
analysis plans,
analysis |¢t_reuse measurement tools
(track construction) collected data >
analysis plans (interpretation)
data from current project,
data/interpretation from
. previous projects
feedback/learning < — >
feedback and
new knowledge

V. Basili
Univ. of MD
14 of 20

LT |

PROJECT

ORGANIZATION EXPERIENCE FACTORY
products > 2
models > n
dats , 3; —— formalize
lessons learned 8 Experience
» 3
direct feedback Base]
€
¢ products tailor
data
€ .
lessons learned <
\J
models s
N Y generalize
baselines %
b tools h 1€
» e
consulting g
< 8
V. Basili
Univ. of MD

15 of 20

WHAT KINDS OF EXPERIENCES CAN WE PACKAGE?

PROCESS MODELS
SEL/STANDARD MODEL FOR GROUND SUPPORT SOFTWARE
SEL/ADA PROCESS MODEL
SEL/CLEANROOM PROCESS MODEL

METHOD AND TECHNIQUE DEFINITION/EVALUATION
READING VS. TESTING
FUNCTIONAL VS. OBJECT-ORIENTED DESIGN
ADA VS. FORTRAN

RESOURCE BASELINES/MODELS
RESOURCE ALLOCATION MODELS
STAFFING
SCHEDULE
COMPUTER UTILIZATION
COST MODELS AND FACTORS
RESOURCE/FACTOR RELATIONSHIPS
TECHNOLOGY/DEFECT ANALYSIS

V. Basili
Univ. of MD
16 of 20

CHANGE AND DEFECT BASELINES/MODELS
DEFECT BASELINES BY VARIOUS CLASSIFICATIONS
CHANGE BASELINES BY VARIOUS CLASSIFICATIONS
TECHNOLOGY/DEFECT ANALYSES MODELS
DEFECT PREDICTION MODELS

PRODUCT BASELINES/MODELS
GROWTH/CHANGE HISTORIES/ESTIMATION
SIZE/CHARACTERISTIC HISTORIES/ESTIMATION
TEST COVERAGE
REUSE TRADEOFFS

PRODUCTS
APPROPRIATELY “PARAMETERIZED” CODE COMPONENTS
DESIGNS
SPECIFICATIONS
REQUIREMENTS
TEST PLANS

V. Basili
Univ. of MD
17 of 20

W L sy aner oMl | me ' [N]

1

IMPLICATIONS

SEPARATION OF CONCERNS/FOCUS

SUPPORT FOR LEARNING AND REUSE

GENERATES A TANGIBLE CORPORATE ASSET

FORMALIZATION OF MANAGEMENT AND DEVELOPMENT TECHNOLOGIES

CAN START SMALL AND EXPAND

LINKS FOCUSED RESEARCH WITH DEVELOPMENT

V. Basili
Unijv. of MD
18 of 20

IMPLICATIONS

CONSOLIDATION OF ACTIVITIES

PACKAGED EXPERIENCE
CONSULTING

QUALITY ASSURANCE
EDUCATION AND TRAINING

FUNDING ISSUES

SEPARATE COST CENTERS
CORPORATE OVERHEAD
PROJECT BILLED FOR PACKAGES

V. Basili
Univ. of MD
19 of 20

Ll LI

LAl . LI

CONCLUSIONS

COMBINING THE

IMPROVEMENT PARADIGM

GOAL/QUESTION/METRIC PARADIGM

EXPERIENCE FACTORY ORGANIZATION
PROVIDES A FRAMEWORK FOR SOFTWARE ENGINEERING DEVELOPMENT,
MAINTENANCE, AND RESEARCH

TAKES ADVANTAGE OF THE EXPERIMENTAL NATURE OF SOFTWARE
ENGINEERING

BASED UPON OUR SEL EXPERIENCE

HELPS US

UNDERSTAND HOW SOFTWARE IS BUILT AND WHERE PROBLEMS
ARE

DEFINE AND FORMALIZE MODELS OF PROCESS AND PRODUCT

EVALUATE PROCESS AND PRODUCT WITH RESPECT TO SUCCESS
CRITERIA

FEEDBACK TO CURRENT AND FUTURE PROJECTS

PACKAGE AND REUSE SUCCESSFUL EXPERIENCE

CAN BE APPLIED NOW AND EVOLVE WITH TECHNOLOGY IN A
NATURAL WAY

V. Basili
Univ. of MD
20 of 20

] | T T T S

il o1 N i / k o

R I ol

EXPERIENCES IN THE SOFTWARE ENGINEERING
LABORATORY (SEL)
APPLYING SOFTWARE MEASUREMENT

by Frank McGarry, Sharon Waligora, and Tim McDermott

INTRODUCTION

The Software Engineering Laboratory (SEL) was established in 1977 as a coopera-
tive effort among the National Aeronautics and Space Administration’s (NASA'’s)
Goddard Space Flight Center (GSFC), Computer Sciences Corporation (CSC), and
the University of Maryland to understand and improve the software development
process and its products within GSFC’s Flight Dynamics Division. During the past
14 years, the SEL has collected and archived data on over 100 software develop-
ment projects in the organization. This has allowed the SEL to gain an understand-
ing and to model the development process. From these data, the SEL has derived
models and metrics that describe the typical flight dynamics software development
process. These models and metrics are the basis for software estimation, plan-
ning, and general management in this environment. They also provide typical
project profiles against which ongoing projects can be compared and evaluated.
The SEL provides managers in this environment with tools (on-line and paper) for
monitoring and assessing project status.

This paper presents experiences in the SEL of applying software measurement.
Examples from flight dynamics project data are presented that demonstrate how
the SEL has used software measures to (1) understand the local software environ-
ment, (2) manage active production projects, (3) plan future projects, and (4) de-
velop rationale for adopting software standards and technology.

SEL Product Environment (Viewgraph 2)

The SEL production environment consists of projects that are classified as mid-
sized software systems. The average project lasts 26 months and requires 9.5 staff
years of effort. The average project develops 93,000 source lines of code (SLOC)
and delivers 102,000 SLOC.

Virtually all projects in this environment are scientific ground-based systems al-
though some embedded systems have been developed in this environment. The
bulk of the software is developed in FORTRAN although Ada is starting to be used
more heavily, while other languages, such as Pascal and assembly, are used occa-
sionally.

F. McGarry
NASA/GSFC

1 of 33
5803

The average staff level for a typical SEL project is 5.4 full-time people. SEL
managers average 10 years of overall experiences, with 5.8 years in the applica-
tion area, and the technical staff averages 8.5 years overall experience, with
4.0 years in the application.

Software Technology Studies in the SEL (Viewgraph 3)

The SEL has undertaken many technology investigations since 1977. Data have
been collected on more than 75 production software development projects, and all
of these data have been fed back into the SEL’s experience base.

The SEL regularly collects detailed data from all its development projects. The
types of data collected include cost (measured in effort), process data, and product
data. The process data include information about the project, such as the method-
ology, tools, and techniques used, and information about personnel experience and
training. Product data include size (in SLOC), change and error information, and
the results of postdevelopment static analysis of the delivered code. For a more
detailed description of the data collected, see Data Collection Procedures for the
Rehosted SEL Database, SEL-87-008.

The SEL has analyzed over 50 technologies, such as design approaches, testing
techniques, tools, environments, training, languages, and methodologies. Also, the
SEL has published more than 150 papers and reports detailing the results of these

mvestlgatlons - -

In the feedback process, the SEL has evolved the standards and practices used for
Flight Dynamics software development. These include models of effort, changes
and errors, and costing. The SEL has also established quality assurance proce-
dures and testing strategies. Standards and practices are an important avenue of
feedback of the measurement performed by the SEL.

SEL APPLICATION OF MEASUREMENT

There are four major applications of measurements within the SEL:

Understanding the Software Environment is essential to any software engi-
neering undertaking. Before anything can be changed, it must be understood
the way it exists now.

Management of Current, Active Projects depends on measuring the projects
and on having a baseline of experience against which to compare projects
trends and absolute measures.

assessments of available technologles “and schedulmg models, all of whlch
depend on measurement and a clear understanding of the environment.

F. McGarry
NASA/GSFC

2 of 33
5803

Rationale for Adopting Software Standards and Technology is the least obvi-
ous, but arguably the most important, application of measurement. Measure-
ment allows the SEL to quantitatively evaluate new technologies that have
potential for favorably affecting the SEL environment. Through this method,
appropriate technology can be inserted quickly and large-scale misapplication
of inappropriate techniques (for the SEL) can be avoided.

The remainder of this section discusses each of these areas in more detail.

UNDERSTANDING THE LOCAL SOFTWARE DEVELOPMENT
ENVIRONMENT

Understanding what an organization does and how the organization operates is
fundamental to any attempt to plan, manage, or improve the organization. This is
true in general and especially true for software development organizations. The
following examples illustrate how the SEL has come to understand its environ-
ment. The measures examined are certainly not exhaustive but show how under-
standing comes from measurement.

Where Do Developers Spend Their Time (Viewgraph 6)

There are two majors points to this chart. The first point is that the baseline
characteristics of the development process must be understood if projects are to be
planned and managed or if new technology is to be evaluated. The second point is
that a stable environment is not quickly or easily upgraded by changes to the proc-
ess. '

One baseline characteristic of the SEL software development process is effort dis-
tribution, that is, which phases of the life cycle consume what portion of develop-
ment effort. Viewgraph 6 compares the distributions of effort for FORTRAN and
Ada projects in the SEL, both by life-cycle phase and by activity. The phase data
counts hours charged to a project during each phase. The activity data counts all
hours attributed to a particular activity, regardless of when in the life cycle the
activity occurred. Understanding these distributions is important to assessing the
progress of an ongoing project, planning new efforts, and even evaluating new
technology. The Ada distributions are a case in point.

These graphs of effort by activity show that, contrary to the early expectations for
Ada, there has been no radical change in programmers’ effort distribution. Ada
projects spend about 20 percent of their effort on design, versus a slightly higher
figure (23 percent) for FORTRAN. The comparison for coding is 18 percent ver-
sus 21 percent, for testing it is 34 percent versus 30 percent. “Other,” the final
category, is 27 percent of Ada effort versus 26 percent of FORTRAN. “Other”
includes all of the ancillary activities that do not fit into one of the primary catego-
ries, such as managing, training, attending meetings, and documenting.

The graphs of effort by phase shows some change in the Ada distribution. The
design phase takes 27 percent of the Ada effort, versus 26 percent for FORTRAN.

F. McGarry
NASA/GSFC

3 of 33
5803

Ada code phase consumes 46 percent of total effort, compared to only 37 percent
for FORTRAN. The test phase takes 27 percent in Ada and 37 percent in
FORTRAN. SEL experience indicates that, in this environment at least, there is a
legacy of many years of developing FORTRAN systems that is not quickly
changed, not even by such a significant change to the process as using a different
language like Ada.

Comparative Classes of Errors (Viewgraph 7)

Companson of the types of errors that are being made in FORTRAN and Ada
projects givés similar results. Again, contrary to expectatxons there seems to be
little difference in the error profiles observed in systems using the two languages.
Computational and initialization errors are each 15 percent of the errors for both
languages. Data errors differ by only 1 percent, 31 percent for Ada as opposed to
30 percent for FORTRAN. Logic or control errors are higher in Ada, 22 percent
versus 16 percent, while interface errors are lower, 17 percent for Ada versus
24 percent for FORTRAN.

The SEL is learnmg through measurement that the long heritage of FORTRAN
development is not easily changed The way the orgamzatlon does business and
the experiences of the individuals in the organization is a stronger influence on the
performance of a project than any one specific technology.

Software Growth Profile in the SEL (Viewgraph 8)

The software growth profile in the SEL is a good example of the models that are
developed to understand the local environment. Lines of code are not counted in
this growth model until they are placed in controlled libraries.

Typically, only a small amount of code is developed during the design phase and
the first part of implementation. SLOC growth during 1mplementatlon shows peri-
ods of sharp growth separated by more moderate growth. This is a reflection of
the SEL practice of implementing systems in builds. Also, in this environment,
developers tend to retain code until they can deliver integrated chunks of the sys-
tem to the controlled libraries, a practice which contributes to the surges in code
growth.

This model also shows that, typically, 10 percent of the code is produced after the
start of testing. Measuring code growth led the SEL to investigate why the system
continues to grow after the end of implementation. The growth reflects error cor-
rections and enhancements made to make the system more suitable to the needs of
the users. Measurement focused attention on this growth and led to a deeper
understanding of the way the SEL does business.

Error Detection Rate in the SEL (Viewgraph 9)

The error detection rate is another interesting model from the SEL environment.
There are two types of information in this model. The first is the absolute error

F. McGarry
NASA/GSFC

4 of 33

mrme mi - .m0 mun - L w

- L 1

L

rates expected in each phase. The rates shown here are based on projects from the
mid-1980s. The SEL expects about four errors per thousand SLOC during imple-
mentation, two during system test, one during acceptance test, and one-half during
operation and maintenance. Analysis of more recent projects indicates that error
rates are declining as the software development process and technology improve.

The second piece of information is that the error detection rates reduce by 50 per-
cent in each subsequent phase. This datum seems to be independent of the actual
values of the error rates. It is still true in the recent projects where the overall
error rates are declining. The next section will show how this understanding can
be applied.

MANAGEMENT OF ACTIVE DEVELOPMENT PROJECTS

Once an environment is understood, historical data can be used to develop models
that describe the expected behavior of the “typical” project. Managers in the SEL
compare current trends of active project data with expected trends (models) and
those of similar past projects to assess the current state of their project. Effort,
computer utilization, error and change rates, and size estimates are among those
data that SEL managers find most useful in assessing stability, quality, and reli-
ability. The following paragraphs illustrate management through measurement in
the SEL.

Using Software Error Rates (Viewgraph 11)

This example shows the use of the error rate model on the Cosmic Background
Explorer (COBE) attitude ground support system (AGSS). Comparing the meas-
ured error rate with the SEL model described in Viewgraph 9 gives an early indica-
tion of the quality of the product. In this case, both COBE’s absolute error rates
and the decline in the detection rate are better than the model, an occurrence
which gives a strong indication that this system will be more reliable than average.
In fact, the software for this project has proven to be extremely reliable.

If the error rate had been low, but the detection rate had not declined, SEL experi-
ence would have pointed to inadequate testing and a less reliable system.

Tracking System Failure Reports (Viewgraph 12)

This graph shows how failure reports behaved during acceptance testing of one
project. Early in acceptance testing most of the staff effort is spent performing
and evaluating tests. If the system is as reliable as planned, the failure rate will
decline as testing proceeds, allowing the staff to spend more effort fixing defects.
In this case, twice the expected numbers of errors were found during acceptance
testing. Fifteen weeks into testing nearly all of the expected errors had been de-
tected and hardly any had been fixed; clearly not enough staff were allocated to
fixing problems. In the 17th week, additional staff was allocated to correct errors.

F. McGarry
NASA/GSFC

5 of 33
5803

Almost immediately, the open failure reports (“X” curve) flattened out and began
to decline as the fix rate accelerated and the error detection rate slowed down.
The point at which the “open” and “fixed” curves cross is especially important
because it marks the point at which defects are being repaired faster than they are
being discovered. At this point a manager can more confidently predict the end of
acceptance testing.

Tracking Computer Use (Viewgraph 13)

This example compares a typical SEL project's use of central processing unit
(CPU) resources on the left side of the chart to a project with a deviant CPU use
profile on the right. Being different does not mean that the project is necessarily in
trouble. For example, the project might be using the cleanroora methodology; the
project might be doing extensive desk work. Here, the CPU usage curve told the
project’s managers that something was different and raised a flag that this project
should be examined. In this case, investigation showed that the project was being
adversely affected by a high number of to be determined (TBD) requirements,
requirements changes, and redesign. Management replanned the project, taking
these factors into account.

CPU usage data are an example of valuable data that are easy to collect. Most
operating systems have accounting systems that provide it. However, for CPU
usage data or any other measurement to be useful to the management of develop-
ment projects, a baseline model must explain the behavior of the measure in the
local environment.

Characterlstlc Stafflng Profiles (Viewgraph 14)

Thls is the time dnstrnbutlon of effort on two projects of similar complexity. The
profile on the left is typical for the SEL, with peaks near the beginning and end of
the implementation phase. -

The project on the right suffered from the Mythical Man Month syndrome. Re-
sponding to significant project requirements changes in the middle of implementa-
tion, the staff was nearly tripled to try to meet schedule requirements. Staff levels
did not start to decline until the start of acceptance testing. Both productivity and
reliability suffered on this project.

A staffing profile with a sharp increase late in the development life cycle is a clear
indicator that something on the project is out of control and that quality and reli-
ability will likely be lower than expected.

Tracking Estimates of Size at Completion (Viewgraph 15)

Tracking final size estlmates provides another strong management indicator.
Project 1, on the left, had a typical SEL history of manager’s estimates of the final

F. McGarry
NASA/GSFC
6 of 33

5803

size of the system. In the SEL environment, requirements changes and specifica-
tion modifications usually cause a system to grow up to 40 percent larger than the
estimates made at preliminary design review (PDR).

Project 2, on the right, shows several deviations from the normal trend. It experi-
enced extreme inflation of the size estimates in the middle of the code phase. The
spot labeled 2 on the graph represents an increase of nearly 25 percent in the
manager’s estimate of the final size. This should have caused a management
review of the project. No action was taken, and the underlying causes of the
inflation, primarily specification changes, continued to increase the size of the
project. Finally, at the spot labeled 3 on the graph, following another 50 percent
increase of the size estimate, the project underwent a detailed management review,
and the changes were brought under control.

Management should have questioned the decrease in size estimates at the critical
design review (CDR) (label 1 on the graph) after the size had grown significantly
during preliminary design. This was an early indicator that the specifications were
not as stable as is expected in this environment.

Using Effort Data in Replanning (Viewgraph 16)

Effort data can be a significant aid in replanning, as illustrated by the history of
successive staffing plans for one project.

The SEL has discovered two typical effort distributions for this environment. One
of them is roughly parabolic and the other has two peaks: the first near CDR and
the other near the start of testing.

The first schedule was based on an underestimate of the size of the system and
used a rough parabola for effort distribution. Toward the end of design, it became
clear that the system was larger than anticipated, and the effort was replanned at
CDR. The first replan used the SEL two-peak model of effort distribution. Effort
continued to grow when the second plan called for it to level off and decline. An
audit was held in the middle of the code phase when it was clear that still more
staff were required to maintain progress. The audit determined that the project
was plagued with an unusually large number of unresolved TBDs and requirements
changes and that—as part of the corrective action—another replan was necessary.
The second replan was based on an accurate size estimate and returned to the
parabolic distribution, which the project followed to a successful completion.

This is a straightforward example of the use of metrics data in both planning and
monitoring a project. The relationships that have been documented for this envi-
ronment support planning and the collection of data on the performance of current
projects allows corrective action to be taken before projects are hopelessly off
target.

F. McGarry
NASA/GSFC

7 of 33
5803

FOUNDATION FOR PLANNING FUTURE PROJECTS

A vital application of measurement is planning future projects. The models and
relationships that emerge from measuring the local environment are the basis of
sound estimates and plans.

Planning Aids for One Environment (Viewgraph 18)

The cost estimation equation, the effort distribution model, the computer utiliza-
tion estimation equation, and the documentation estimation equation are examples
of the relationships that are used as planning aids in the SEL environment. They
allow managers to generate realistic project plans, with proper allocation of effort
and scheduling of milestones. Supporting resources can be planned and scheduled
with confidence.

Equations that produce an estimate of the cost of a project from an estimate of the
size of the system are widespread today. The SEL version of this equation
is Effort = 1.48 * KSLOC?®®. An estimate of total effort is not enough, however.

Effective planning requires an understanding of how effort will be spent and when.

reviews and milestones should occur. The effort distribution model provides SEL
managers with schedule guidance. Other relations are also important to good
planning, such as how much computer resources will be required and how much
documentation will be published. SEL project data are evaluated periodically to
produce up-to-date planning data for new projects.

Additional Local Planning Aids (Viewgraph 19)

Software managers in the SEL have observed relations—such as the fraction of
changes that are due to errors, the growth of size estimates over the life of
projects, and the cost of maintenance—that are useful for planning. Approxi-
mately one-third of the changes made in this environment are made to correct
errors. This heuristic is useful for gauging the quality of the system as it is devel-
oped and assessing the effectiveness of testing. The final system is about 40 per-
cent larger than the size estimate at PDR. This observation quantifies the stability
of the requirements of the systems built in the flight dynamics area. Maintenance
costs per year are about 12 percent of the original development cost. These rules
grow out of understanding the environment.

This chart also presents metric relations between FORTRAN and Ada. Ada pro-
grams that conform to the SEL Ada style guide have three times the SLOC of their
FORTRAN equivalents. When comments are discounted, Ada programs are
2.5 times the size of their FORTRAN equivalents. When only those source lines
that are part of an executable statement are counted, Ada programs are still twice
as large as FORTRAN. Finally, when considering only the number of statements,
the programs in the two languages are the same size.

F. McGarry
NASA/GSFC
8 of 33

5803

-

o

AN ., - "

.

These differences between Ada and FORTRAN reflect the coding styles used for
Ada and FORTRAN in the SEL. One of the important lessons to be learned from
this viewgraph is that even in a baselined environment, it is crucial to understand
which model to use for planning.

RATIONALE FOR ADOPTING PRACTICES AND GUIDELINES

Measurement provides an organization with justification for the way it does busi-
ness and an orderly process for selecting which new technologies and methods to
adopt. This section presents the SEL experience with evaluating and trying to
understand two sample technologies that are candidates for becoming “standard”
in the SEL. These two technologies, the Ada language and Object-Oriented Devel-
opment (OOD), are currently under intense study in the SEL.

Impacts of Ada on a Production Environment (Viewgraph 21)

This chart shows the current results of the SEL’s investigation of Ada. The adop-
tion of Ada is much more than just changing languages. Proper use of Ada implies
the use of new software engineering techniques that must be learned and practiced.
This deeper change adversely affected the productivity results from early Ada
projects. While initial productivity results for Ada were below baseline FORTRAN
productivity, the trends are in the right direction in subsequent uses of the technol-

ogy.

The use of Ada has demonstrated sufficient positive residual effects to offset initial
productivity concerns. The use of Ada seems to have favorably affected some
measures in this environment; for example, Ada technology has improved the level
of reuse for the sample set of projects studied so far.

The history of the insertion of Ada technology into the SEL environment shows
that in some cases the environment must evolve to be able to effectively utilize this
new technology. The FORTRAN legacy in the SEL, such as life-cycle models,
estimating relations, and review techniques, is pervasive and changes slowly.

Object-Oriented Development (OOD) and Code Reuse
(Viewgraph 22)

This viewgraph contrasts the levels of reuse achieved by five recent projects using
structured analysis (SA) and five projects using OOD. The SA projects seem to
stay relatively constant in the level of about 35 percent reuse, even when reuse is
pursued very aggressively (Upper Atmosphere Research Satellite (UARS) Dynam-
ics Simulator (UARSDS) project). The OOD projects, however, start with better
than 30 percent reuse. With experience, and the accumulation of a body of Ada
code for reuse, the last two OOD projects are projecting 76 percent and 90 percent
reuse. The significant level of reuse in the Extreme Ultraviolet Explorer (EUVE)
Telemetry Simulator (EUVETELS) (90 percent) was accomplished through reusing

F. McGarry
NASA/GSFC

9 of 33
5803

specifications and design as well as code. OOD seems well suited for reuse, but
further study is required to conclude that OOD technology is primarily responsible
for these high levels of reuse.

OOD, in the SEL, is a new technology success story. The SEL has tried and
abandoned many other technologies, but currently intends to keep working with
OOD. The keys to being able to evaluate new approaches to software development
are (1) being able to measure trial projects and (2) having a baseline of the envi-
ronment against which to judge the new method.

CLOSING THE LOOP—APPLYING MEASURED TECHNOLOGIES
IN THE SEL

Viewgraph 23 shows examples of how the SEL closes the feedback loop by incor-
porating the results of studies in the SEL guidelines for software development.
This feedback is the primary mechanism of improving the software development
process in the SEL. Without feedback, it is not possible to ensure that manage-
ment capitalizes on the lessons learned on prior projects.

The seven documents listed on the right side of the viewgraph define the set of
standards and guidelines currently used as a result of the SEL studies. They con-
tain the SEL life-cycle model, the process model, and the product models. These
documents obviously change as the SEL gains more experience.

SUMMARY

This paper has presented some examples of the way that the SEL measures soft-
ware development and uses the measurements. Measurement produces under-
standing of the environment. This understanding can then be used in planning and
managing projects. Finally, understanding is necessary as a basis for evaluating
new tools and techniques so that a continually improving process may be adopted
for the software development organization.

F. McGarry

NASA/GSFC

10 of 33
5803

VIEWGRAPH MATERIALS
FOR THE
F. MCGARRY PRESENTATION

5794

I HAVHOMSIIA

voo'Zier

6861 ‘62 HIGWIAON - dJOHSHHOM DNIHIINIONT FHVMI40S TVNNNY Hivi

NOILYHOdHOO
3ON3I0S H31NdNOD O4SH/VSVYN

ANV
11OWHIASIN NIL

VHOOITVYM NOYVHS AHHVOON MNVHd

INIFNIFHNSVIN FHYMLI0S ONIATddV
13S IHL NI S3ON3Id3dX3

F. McGarry

NASA/GSFC

11 of 33

S103r0dd NvH1HOH 0L 40 I1dINVS «

(0e-€0)
(0Ge-s2)

(0og-20)
(€v-81)

+3DNVH)

W

¢ HdVHOM3IA

G'8
001

ov
89

0'tve
00l
18]

0'col
0't6
S'6
0'9c

JOVHIAVY

(**0V ‘O “IVOSVd) HIHLO %01 'BPY %Sk ‘NVHLHOS %S,

SINIW3HINO3Y ISNOJS3H ANV ALNIgYI3Y 31vH3IAOW
"OIHdVHD 3JAILOVHILNI ‘G3SYE-ANNOYD ‘OIILNIIOS

INIINNOHIANI NOILONAOHd
AHOLvHOS8VT DNIHIINIONI JHYML40S

o W Lo ¥ L o e T s

soolter

344V1S TVOINHO3L
SHIOVNVIN

(SHV3A) IDONIIYIAXI TIVHIAO

44V1S TvOINHO3L
SHIOVNVYIN

Awm<m>v JON3IIHIdX3 NOILYOINddV

STVNAIAIGNI
AV3d
JOVHIAV

(AIND3 INWIL-TINY) 44V1S

d343AN3a
ad3d013A3a

(DO 0001) 371S
(SHY3IA-44V1S) 190443

(SHLNOW) NOILYHNA
:SOILSIHILOVHYHD 103rodd

*SIOVNONVI

‘JHVMLH0S 40 S3dAL

F. McGarry
NASA/GSFC
12 of 33

€ HdVHOM3IA

gooLler

- S31D31VHLS ONILS3L - SIONVHO -

JONVHNSSY ALNVYNO - SHOYYHT -
ONILSOD - (LSOD) 140443 -

(SNOILVZINYOHO INIWJO13AIA YSYN) SIOILOVHd ANV SAHVANYLS DNIATOAT e

(73S WOH4 A30NAO0Hd SISATYNY d31IvV13A) SLHOd3IY/SHAdVd 051 H3AO e

("*SIDOTI0AOHLIN ‘ONINIVHL ‘LNIWNOHIANI ‘ST00L ‘NOIS3a
‘ONILSTL) AIZATYNY STIDOTONHOIL IHYMLHOS O1dI03dS 0§ H3IAO e

v1va 10Ndoyd - S100.1 - SIONVHO -

ONINIVHL - SOILSIHILOVHYHD 103roYd - SHOYHT -
TJANNOSH3d - SAOHLIW - (1S0D) 1HO443 -

(LNIWJOT13AIA HNIHNA) S1O3rodd 11V WOd4 S3HNSYIW/VLva a3ivi3a e

(SLNaWIYAdX3) d3IaNls S103rodd IHVYML40S NOILONAOYd +S. @

(6861 - L161)
73S 3HL NI
S31ANLS ADOTONHOIL FHVYMLH0S

F. McGarry
NASA/GSFC

13 of 33

0 U T O T A T [T | (IRTRT Y 'Y S I TR pe y! i o y 4

¥ HAVHOMIIA

00'iLer

ADOTONHOIL/SAYVANVYLS WS DNILJOAV HOH4 FTVNOILYY e @
S103rodd 34N1Nd ONINNY1d e @
S103r0dd NOILONAOYHd JAILOV DNIOVNVIN e @

INJWNOHIANT FHVYM1L40S JFHL ONIGNV.LSHIANN e @

INJWNIHNSVYIN 40 NOILVYIIddV 13S

F. McGarry
NASA/GSFC

14 of 33

S HdVHOM3IA
800121

LNIJINNOHIANT LNIINdOTIAIA FHVMLH0S

« 1IVOOT,; JHL ONIANVLISHIANN

®

INJINFHNSVIIN 40 NOLLVYIITddVY 13S

F. McGarry
NASA/GSFC

15 of 33

oo [T 2 [l [NLT] [T 4 Woaiw I [

9 HAVHOMIIA

S103r0odd NYH1HO4 8 ANY BPY § NO Q3SVax 800°412f

F. McGarry
NASA/GSFC

16 of 33

A3ONVHO ATHOIND LON SI AINJWNOHIANT 40 JOVLIH3H,

RS

30N3d3a ALva LON) ALIAILDVY A

\ %9¢
ANDIS3A

(LNIAN3d3a 31va) 3SVYHd 310AD 341 A9
epy NYH1HO4

«(FHYMLI0S 40 SASSVIO HV1INIS HOA)
JNIL HIFHL AN3dS SH3d013A3Ad Od FH3IHM

. . . . | ' WAy o |

L HdVHOM3IA

otoiier

S103roHdd NvH1HO4 8 ANV S1O3rodd epY § WOH4 SHOHHI NO a3sva«

SHOHYT JOV4HILNI HIM3IH LYHMIWOS BPY«

SIOVNONYT LNIHIH4I3 HO4 N3AT “HV1IWNIS 3LIND S31Id0Hd HOHH3.

L€

il 1ouNOD
1 /oPo7

1 7ou1NOD
¢} /01901

NOLL TVYNOLL
“VZIVILINI| -V1NdINOD,

NOIL
“VZIVILINI| -

Gl St

Sl Gl

epy Nvd1404d

+*SHOHYHIT 40 S3ISSV1O JAILVHVAINOD

F. McGarry
NASA/GSFC

17 of 33

e i - - [TR Vo [o o> '] » i » ¥

(=

1S31L 3ONV.1d4300V AN3

8 HdVHOM3IA

INIWNOHIANT TvO0T 3HL 40 SOILSIHILOVHVHO
JHL 1937434 SNY3LLVd INJWNJO13A3A LNILSISNOD

F1NA3IHIS 40 %
oL 06 08 0L 09 0S ov o€ 74 Ot

L
1§31 LINN/300D 40 aN3

73S NI 371404d HLMOHO FHVMLH0S

ot

0¢

0c

8014

0s

09
oz
08

- 06

00t

-007 V101 40 %

crtoiier

F. McGarry
NASA/GSFC

18 of 33

6 HdVHOM3IA

2861 ANV €861 NI3IML3IEF S103rodHd S NO Q3sva«

3SVHd 1IN3ND3ISEaNS HOV3 NI 31vH

dOHH3 JATVH OL1 S103dX3 INJWNOHIANT 73S

SNOILYH3dO

1S31 3ONV1d4300V 1S31 W3LSAS

1S31/3d03

llllIkL

x X X l_x

X A X
x X X

(LNIWNOHIANT 3NO NI)

+»31VH NOILD313d HOHH3

o01SX/SH0HHS

gLolier

F. McGarry
NASA/GSFC

19 of 33

~ 01 HAVHOMIIA

S103rodd LIN3JINdOT3IA3Ad JAILOV

40 INIWIDVYNVIN FHL S1HOddNS

@

INIJWNIHNSVYIIN 40 NOLLVYOIlddV 13S

vioiier

F. McGarry

NASA/GSFC

20 of 33

Ll HAVHOM3IA

ALNMYND 3HYMIHOS 40 NOILYOIANI
A14V3 3AIAOHd NVO S31vH HOHH3 DNIHNSYIN

SNOILYH3dO 1531 3ONV1d4300V 1S31 W31SAS 1S31/3002

ALMIGVIN3Y 3909, DNDIOVHL
S31VH HOHH3 JHVYML40S

0071SX/SHOYH

siolier

F. McGarry
NASA/GSFC

210f 33

¢l HAVHOMIIA

oLo'zLer
7001 INFWIDYNVIN S1BVTVA V Nado- X 27
o= - LG
Q0TS &'} = 321S .SdOOL. » 38 NVO S3LvH Xid GNV SIENTIv4 ONIYNSYIN a3xid - ¥ 839
annod -0 =3%
wZR
(3ONVLd300V) ONLLSIL 40 SHIIM

oy ce oe ge 0c 18 oL] 0

20

<
=]

3
(SANVSNOHL Ni)
S1HOd3H 34NTIvd 4O H3IBWNN

g0

+(73S NI 1D93rodd I Wo44)
S1HOd34d 34NTIVd INJLSAS

€1 HdVHOM3IA

SSOYV SgH3 « 8lo'Lier
XXX EEE ViIVA TWNLOV ==semsmemms= NOILOIMOHd £861 AHYNHEIA
NOILO3MOHd €861 NN = o e o m s e m NOILO3roYd 2861 3NNr
“ v861 _ €861 _ 2861 >
SHIIM

02F OtL 001 06 08 0L 09 0s o¥ o€ 0c 0]
I

B’
_f

44V1S 40 (SHIIM MHOM HNOH-0¥) INTTYAINDI-3WIL-TIN

— 8t
- oz
— 2¢
— $2
AY3AM3Q onusat | onusaL NoISaa Norsza | ssawny | 3¢
W3LSAS ;E_mog_ 131848] nq_sm_un..sm_ I anwne _ a3vi1aq _ W3ud SINO3Y gz

HNINNV1d3d OL dIV NV - «V.1vad 140443

F. McGarry
NASA/GSFC

23 of 33

¥1 HdVHOM3IA

NOLLVINIWIdI NI AV130 - NDIS3034
INVOIJINDIS NI 17NS3H SNOILIGAY SIN3IW3HIND3H 3AISNILX3 @

HHS WOYH SHIIM HYS WOYL SHIIM
0oL 08 09 oY 02 0 0zl 00l 08 09 ob 02 0
T T T 71 T T 1 0 T T T 7T T T _
._.wm,._. " 30090 NDIS3a - hmm.h " " NDIS3Q —
! !) - 002 1 ! —
1 |] [} [] []
- :] 2 : : -
1 1 [| — OOv C [] [|]
[] [] [] T [| []
1 1 1 =i m " " -
1 1
- OOO pos) -—
e /) : o . "
1 [] [] - b [] -
: " - 008 § " ; —
1 ! n o n 1 L
[] [] 1 [] | }
[| 1
- : - 000t : : =
[] [] 1 - [] [] -
[} [] | |] |]
| 1 '] [] OON—. | | | |
(8g43) 2 193r0Hd - Y1va NdD IALLYINWND (LNIWNOHIANI 13S NI 193r0dd 1vOIdAL)

(S309) | L03r0odd - Y.Lva NdD IAILYTINWND

(ALIMIGVLS NDIS3IA ANV SLNIWIHINOIH DNILIT143H)
34SN H31NdINOD ONIMOVHL

eéLoLier

0c

ot

09

08

0ol

0cl1

(0¥08 SYN) SHNOH NdD

F. McGarry
NASA/GSFC

24 of 33

Sl HdVHOM3IA

(ZLUMOX3Z 'MISVE) .LNIWJOTIAIA IHYMLIOS VDS WNIAIW DNIZATYNY, - IONIHI4IY . 020k2r

S3T140Hd ONIJ4VLS NI
d310371434 39 AVIN LO3rodd 40 ALNYNO ¥ ALNIGvN3y

HYS H3L14VY SHIIM HYHS H314V SMIIM
08 09 ob 02 0 08 09 ov 02 0
rTT T T 1T 1T 1 0 N (N 1 E RN EE | R m— 0
! 3009 ! NDIS3A ' 3000 ! NoIs3a L/
[] 1 1 [] N
[§ m [| [] -)
Cc C
" : - = : : 1 E
| (] - G ~]] —
[] [] [}
!] = _M ,] “ B _M
[] [] — m [] [] m
[] [| [®] 1] = O
1 1 - c ' 1 c
1 1 — < ' 1 - 9 <
" “ Ho f " " 1 E
]] — m] |N._
[}
" " - »]] —{ 8 »
[} [] —t 1
| BN]] —
[] [] = 1 1
[L Gl 1 1 oL
(HLINOW NV TVDIHLAN) +(S1D3roYdd 13S 40 WIIdAL)
(8-3Q) 2 LO3roYd Y33IM/1HO443 44v1S (8-3Q) 1 LO3roYdd M¥33M/1H0443 44v1S

(ALIX3TdIWOD HYTINIS 40 S123rodd 2 DNIHVHINOD)
S3T404dd ONI44VLS J11SIHALOVHVYHD

NASA/GSFC

25 of 33

F. McGarry

] 1 i - 1 Ll o 110 i e [[(. [] ¥ »

91 HdVHOM3IA

(SIONVHO "03dS HIHLHNA TOHLNOD
/SIONVHO SINIWIHINO3H/SIINAIHOS/LSOD) MIIAIH INIWIDVYNVIN a3Tv13a (B)

(G3TIOHLNOONN SINNLLNOD ON3HL - NIX¥V.L NOILOY ON) 303N MIIATH - NOLLYDIONI DNOHLS (2)
Had Y314V SINFWILINDIY INOS 40 Nolznaa (1)

HHS WOYH4 SH3IIMN HHS WOHA SH3ITIMN
00} 08 09 ov 02 0 ozl 00L 08 09 o 02 0
1T T T T TTT T T T 000001 S I L R
153 3009 ' NDIS3Q 1s3L 1 isaL ' 300D 1 NDIS3Q
walsAs! ' 00V JW3LSAS) -
. ' @ - ' ! 1
' @ e - "
[§ 1 C 1 1
: ; -{ 00000z 7 Vo :
.] w 1 ' '
1] @)] 1 1 —
. ,.] L "
" " nGu 1 1 1
. : m ' . .
" : - ooooog " . "
[] [] [] | | [|
[] [] [] [] 1
| [| 1 1 []
[|] 1 5 | |
JIVINILSE 3ZIS 2 103ro4Hd (INIWNOHYIANT SIHL HO4 IVOIdAL)

A1VINILSE 3ZIS | 103rodd
(.ALIIGVLS, 40 SNOILVOIANI)
SILVYINILST 3ZIS TVNId ODNIIXOVHL

Lzozier

000001

3Aa09 40 S3NNM

000002

F. McGarry
NASA/GSFC
26 of 33

Ll HAVHOMIIA

S103rodd 3dNn.ind ONINNVid

d04 NOILYANNO4d S30NAao0dd

©)

INJINIHNSVIIN 40 NOILVYIINddV 13S

zcosier

NASA/GSFC
27 of 33

F. McGarry

» 1 o o TR T R VT 1T T I) | Wi il Wi " W C bl e ¥ | ¥ ¥ Vi e li 1o

81 HdVHOMIIA

geo’ller

H39HNE344 NISvVE ".13S 3HL NI NOLLYWILS3 ANV INIWIHNSYIW DNINWYHDOHd.
dVA - OMMNNYd NISYEA “13S 3HL NI S31GVIHVA H3H10 ONV LHO443 N33ML3E SJIHSNOILY13H ONIGNIS, SIONIHIITH.

F. McGarry
NASA/GSFC

28 of 33

(o 007TSY) L'¥E€ = 20Q NOILVY.LNIWNOO0Q 40 S39Vd

(DOTSM)+ S + 801 = SNNY WNN NOLLVZIILN H31NdWOD
%61 1S31 JONV.LdIOV
%ET 1S31 WALSAS
%92 1S31/3400
%Ll NDIS3a a3iv1i3a

%S| NDIS3IA AHYNIWIMIYd NOILNGIH1SIQ LHO443

g D0 1SMx 87'L = 1HO43 1S0J 103rodd a31vINILS3

+*LNJINNOHIANT INO HO4 SAIV DNINNV1d

61 HdVHOMIIA

ecoirer

T3S IHL NI SHIDVNVIN WS JO SFHNSYIW/SNOLLYAHISEO0 NO g3sve ¢
(AGWIND 'YINST "AHHVOOIN) ANIFAWNOHIANT IHYMLIOS NOILLONAOH V NI ADOTONHO3L BPY 40 NOLLYNTVAT. ‘ZON3Y343Y 'L

DNIDVYNVIN/ONINNVY1d TN4SS3O0NS OL AIA
S13A0OW ANV SdIHSNOILY13d d3aNINH313a ATIVOOT

3 3 SIN3IW3ILVLS
HA/1HO443 INJWJOT3A3IA %2t ~ 1HO443 JONVNILNIVN 4 I S3ANM F318v.LNO3IX3
Had 1V 37ZIS * V'l ~ 321S 3000 1¥NId G'¢ I S3NM INIFWINOD-NON
‘C/STONVHO # = SHOHH3 € I S3NIT TVOISAHd 101
S3NM S3INN
BPY NVH1HOA4
@ SdIHSNOILY13d TVNOLLIAAY IT1dWVS @® 3ZIS 3A0J 3IJHNOS BPY

SAlVv YNINNV1d TvO01 TVNOLLIAdV

F. McGarry
NASA/GSFC
29 of 33

02 HdVHOMIIA

seosier

SANM3AAIND/S3011L0VHd LNIJNdOT3IAIA DNILJOAV
404
JFTVNOILVH S3dIAOHd

®

ININIHNSVIN 40 NOILVYOINddY 13S

F. McGarry
NASA/GSFC
30 of 33

L¢ HdVYHOM3IA

9z0’LLer
W3LSAS TVNOILYHIHO NY LON - LO3r0Hd AQNLS TVIO3dS V SI BPY 1SYIdxx

O071SH 094 OL S8 WOHL 3ZIS NI ONIDONVH S1O3rOHd BPY L NO Q3Sva«

JNIL H3AO 3AILISOd W33S SAN3YL
HV3T1O 13A LON EBPY HLIM ALIAILONAOY

BPY BPY BPY £4BPY BDY BPY BPY 44EPY
Up PIE Puz 1SI NVHLIHOA Uy P& puz ISI NVH1HOS
« 0
o Sl
||_
> g
L 4t &
: '8
6’8 m 1S 2§ g
wi— SL O - 6. 2
- >
. - 8L < -1 06
vl 12 S0l
(SINIWILYLS) <Ol (SaNM 101

+LNJINNOHIANT NOILONAOHd V NO BpPY 40 SLOVdI

F. McGarry
NASA/GSFC

31 0of 33

. - T e o W [[') W Noun e [T C ¥ ' ¥ [! [A " e [N

¢C HdVHOM3IA

S73LSHVYN 40 NOILVAIYIA V SY NILLIYIM SO3dS ST13LIANTws B0
BPY NI S103rodd TV«

3SN3H ONILHOddNS OO HO4 SANIHL LNVOIHINDIS AH3IA

3 N N 3 N 5
/00 & AN @@)) R 5 w2 GO
/oo«\v oo > 6«@% /oe %w&oa ro/ £ roo,@,%o @@n/v ° r%/o,%U o@/ o« &o
P AP PO 9
0 0
1 oz %9k —| 02
2 wez ¥
OO o ° 2
craE %2 ~or 3 | wse %9€ -1 9 3
%2h c P
m m
i I ~ 09
%9, -l % 17
*2%06
0oL 00!
000 DNIST SLo3rORd S (SANIYL INVOIHINDIS ON) SISATYNY

a34NLONYLS ONISN S1O3rodd IN3O3Y §

3SN34H 34d0D 1V DNIMOO1
(Q00) LNINdOT3IA3IA AILNIIHO 103rgo 40 3sNn

F. McGarry
NASA/GSFC

32 0f 33

€2 HdVHOMSIA

(£8) ZLMOY3Z -

(58) AHUYOOW "TVH "LIT VA -

ANIWJOTIAIA AILVINIIHO LD3Arg0 TvH3IN3ED, "L (+8) AHHVDOW "MOOD -

e .
-3AIND FIALS BRV. 9 (68) N3IHD "NVIFGIVHINOM -

JONILSIL ANY NOILYOIHIHIA IHYMLIOS, 'S
(58) QYYD 'AYY W '3OVd -
NOILYWILS3 1SOD M/S OL HOVOHddY. ¥ Voo
INIWdO13A3a
JHYMLAOS ‘a'd HO OOEANYH SHIWWYHOOUd, €

(s8) QYYD 'I1SIHOV -
(S8) AHYYDOW '3DVd 'QYvD -
(£8) MUYLS ‘ZLIMIQITS -

LNINJOTIAIA WS OL HOVOHddY AIANTNWNOD3IYH. 2
(¢8) NMISve 'AISWVY -

(G8) AHHVOOW 'AG13S ‘AYVD -
(s8) 1IsSve 'Ag13S -

«INFWJOT1IAIA WS HOd XOOFANVYH SHIOVYNVI. 'L

JHYMIHOS NOILONAOYHd
HO4 S3INM3AIND

g20'Ller
]

ONIJALOLOHd

39VSN 1001

S13A0N LSOO

WOOY NV310

A% Al

S3IHOVOHddY NDIS3IA

ONIQY3Y
/SAIDOTONHOI3L ONILS3L

d31an.is S3IDOTONHOIL
TVNOILLIAAVY FTdNVYS

13S FHL NI SIIOD0TONHO3L d3HNSVIN ONIATdAY

dOO7 3HL ONISOTO

F. McGarry
NASA/GSFC

33 of 33

w

ol b

i

L LA

PIEEE -

PIE

PILERIL

"

-

Evaluation of the Cleanroom Methodology in the
Software Engineering Laboratory

Ara Kouchakdjian (University of Maryland)
Scott Green (NASA/GSFC)
Victor Basili (University of Maryland)

[Slide 1]

Over the past two years, the Software Engineering Laboratory (SEL) has conducted
an experiment using the Cleanroom software development methodology. The
methodology is being used on an actual Flight Dynamics Division (FDD) project in
order to evaluate the feasibility of Cleanroom in the environment. This presenta-
tion will first focus on a description of the methodology. After that, the experi-
ment itself will be explained. Finally, some results will be shared and future work
will be described.

[Slide 2]

The Cleanroom methodology was conceived by Dr. Harlan Mills, formerly at IBM-
Systems Integration Division (IBM-SID), in the early 1980’s. The goal of Clean-
room is to develop software that is ‘right the first time.” Mills’ contention is that
the best tool for software development is the human mind. Unfortunately, it is
also the most underutilized tool. The ‘right the first time’ goal is achieved by three
activities. First, there is an emphasis on human discipline in program verification
rather than computer aided program debugging. The concept behind this belief is
that a high quality software product is built by solid design and development prac-
tices, not by debugging a mediocre product. This concept is facilitated by using a
top down development approach, with a large number of builds. In this manner, a
system is broken down into many small pieces, each of which can be solved and
verified correctly, resulting in a high quality system. The second manner by which
the ‘right the first time’ goal is ensured involves the complete separation of the
development and test teams. Developers are not allowed to compile their own
code, let alone unit test it. This forces developers to use good design and develop-
ment techniques in order to produce a high quality product, since they do not have
the luxury of testing the code. Third, software is developed with certifiable reli-
ability, which is assessed in terms of Mean Time to Failure (MTTF). This

5794 A. Kouchakdjian
Univ. of MD
1 of 22

approach, along with the top down development, allows the quality of the system to
be continually assessed during the testing process. With Cleanroom, the emphasis
is on error prevention, not error removal.

[Slide 3]

Development with the Cleanroom process is done at a desk or on a personal com-
puter. Once again, developers cannot test the code, nor can they compile it. The
developers read and review the code until they are convinced that the code is
correct. At that point, they submit the code to the testers, who put it under con-
figuration control, then compile, link and execute the code on the mainframe.
Testers use a statistical testing approach, where test cases are generated according
to the operational profile of the final system. When failures occur, the code is
returned to the developers and corrected.

[Slide 4]

Cleanroom has been used previously at IBM and at the University of Maryland,
with significant success in both environments. Surprisingly, there has been little
additional use of Cleanroom in other environments. The Cleanroom experiment in
the SEL is 51gmf1cantly different than the previous uses of Cleanroom. First, the
orgariization is mdependent from those who conceived of the Cleanroom method.
Second, the system being developed is much larger than the one developed in the
controlled expenment at the University of Maryland and is a productlon system.
Finally, the FDD environment is one in which there is a large amount of change.
The system specifications frequently change throughout the development lifecycle.
This was a major area of concern as it is difficult to develop software ‘right the
first time’ when the concept of ‘right’ may often be changing.

[Slide 5]

The primary reason for the SEL Cleanroom experiment was to possibly improve
the way software is developed in the FDD. This includes improvements to both the
process and the product. For example, the SEL was concerned about the large
amount of time spent doing rework in the FDD environment. It is estimated that in
this environment between 35% and 45% of the lifecycle effort is expended in re-
work activities. Comparable flgures have also been reported at TRW. These

5794 A. Kouchakdjian
Univ. of MD
20f 22

LA L A L RN

activities include correcting errors, making changes, redesigning components, and
implementing modifications to the specifications. There was hope that Cleanroom
could help decrease the amount of rework done on projects.

In addition, the SEL wanted to apply, assess, refine and reapply the Cleanroom
methodology as described by the Improvement Paradigm. With the description of
the method now complete, the experiment can now be discussed.

[Slide 6]

The experiment is being conducted on an actual production system of approxi-
mately 33,000 lines of FORTRAN code. The staff was separated mto development
and test teams and spent approximately half their schedule on the project, as all
personnel work on multiple projects. This was the first time that any of the staff
had worked on the specific application, and, of course, this was the first applica-
tion of Cleanroom by the personnel.

[Slide 7]

The project was completed over 22 months, from January of 1988 to November of
1989. At the present time, the subsystem is at the end of system test. A month of
training served as preparation for the project. Training activities included related
readings, a number of project meetings, and a one week tutorial on the Cleanroom
methodology presented by Victor Basili of the University of Maryland and
Michael Dyer and F. Terry Baker of IBM-SID. The focus of the tutorial was on
previous experience with Cleanroom and a detailed description of the method.

When looking at the schedule, one notices an overlap between the coding and
testing phases. This is possible because they are being done by two different
teams, which allows the activities to be done in parallel. In addition, the top down
development approach allows the developers to work on the second build of the
system while the testers are testing the first. Each of the six builds contained
approximately 5000 source lines of code, which is much smaller than typical build
sizes in this environment.

[Slide 8]

The Cleanroom method was tailored to better fit the FDD environment. Typically,
the FDD follows a waterfall approach to software development, with the

5794 A. Kouchakdjian
Univ. of MD
Jof 22

development lifecycle divided into sequential phases. During the Cleanroom proj-
ect, design, implementation and testing activities occurred simultaneously, al-
though a top down development approach was still followed. In the FDD, the
developers and testers are often the same, whereas the development and test teams
were completely separated on the Cleanroom project. During the design phase, the
Cleanroom developers improved and corrected the design as a team, rather than
having one developer read another’s program design language (PDL). A more
thorough code reading process was also employed, where two developers would
read the code written by the third. The code would be reread until the developers
were convinced that the code had no remaining faults. This process replaced the
typical code reading and unit testing done in this environment. Finally, the statisti-
cal testing approach was significantly different than the system and integration
testing which is employed in the FDD.

Since the description of the experiment itself is now complete, there is now a
context in which to view the results.

[Slide 9]

In terms of the distribution of effort in various activities during the life cycle, we
see a notable difference between typical SEL projects and the Cleanroom project.
Significantly more time was spent in design on the Cleanroom project than on
typical SEL projects. Additionally, the effort distribution during the coding phase
was also different. The coding phase consisted of two activities, writing code and
reading code. Typically, 15% of the coding effort is expended reading code. On
the Cleanroom experiment, over 50% of the coding effort was spent reading code.
A different distribution was expected as the developers did not unit test their code,
and relied heavily on the code reading process as the only means of verification.
Overall, we see that the total effort distribution is significantly different.

[Stide 10)

When looking at the growth of the system with regard to both size and number of
changes, there are notable trends. Code and changes began to appear later with
the Cleanroom project, as more time was spent in design. The growth rate was
also greater for the Cleanroom project, which was to be expected. The Cleanroom
growth profiles are quite different than those associated with typical SEL projects.

5794 A. Kouchakdjian
Univ. of MD
4 of 22

[RN} "oy - .o | - e mao

[Stide 11]

For a comparison of computer usage, the Cleanroom experiment was viewed in
relation to three recently completed projects in the FDD. Since the three systems
were between three and seven times the size of the Cleanroom project, the figures
for all systems were normalized by the respective sizes of the systems in order to
form a common basis of comparison. The two areas of comparison were the
number of computer runs (compiles, links and executions) and the number of CPU
hours used. Overall, the Cleanroom project used between 70% and 90% fewer
computer resources than these three typical SEL projects. Again, this was ex-
pected as developers were not allowed to compile or unit test their code.

[Slide 12]

Next, the error and changes rate were compared, along with project productivity.
Error and change rates are tracked from when code comes under configuration
control through the end of system test. With typical FDD projects, the code goes
into the system library after it is unit tested. This is a later time than the Clean-
room project, which delivers code to the controlled library after it is code read.
The error rate was found to be less than half the error rate on a typical SEL
project. Of course, the acceptance test results will be the final gauge in under-
standing if Cleanroom actually leads to a lower error rate. The change rate was
one third less on the Cleanroom project than on typical SEL projects. Finally,
productivity is nearly 70% higher on this project when compared to other projects
in this environment. The reasons for these impressive preliminary results must be
further understood.

[Slide 13]

One of the original goals of the project was to decrease the rework effort. As
previously stated, the error and change rates have decreased with the Cleanroom
project. Additionally, the time to fix an error has also decreased. Typically, less
than 60% of the errors are corrected in less than one hour. With the Cleanroom
experiment, approximately 95% of all errors were corrected in less than one hour
As these results seem to indicate a decrease in rework effort, one of the original
goals of the Cleanroom experiment appears to have been satisfied.

5794 A. Kouchakdjian
Univ. of MD
S of 22

[Slide 14]

Finally, the distribution of faults according to where they were found and corrected
was viewed. This accounts for every fault found during designing, coding and
testing. Over half of the total number of faults were found during the code reading
phase.

Of those faults, less than 29% were found by both code readers. Since this means
the vast majority of faults were found by only one reader, we are led to believe that
two code readers were more effective than one on this project. During compila-
tion, only 6% of the routines contained nonclerical faults. Most of the compilation
faults were simple typographical errors. Overall, more than 87% of all faults were
found before the code came under configuration control, and over 91% of all faults
were found before the first test case was executed.

The fact that the SEL was able to use a version of the Cleanroom methodology in
its environment, together with the early analysis, would lead one to conclude that
the experiment was successful. Preliminary results, such as decreasing error and
change rates, increased productivity, and a reduction in resource usage and rework
efforts, are very impressive. Of course, much additional analysis remains.

[Slide 15]

The results must be better understood. Some results may be affected by extenuat-
ing circumstances, such as the quality of the staff working on the project. Final
conclusions cannot be made until the subsystem is fully integrated and goes
through its formal acceptance testing process. The first experience must also be
tailored and packaged, as described in the Improvement Paradigm, so that addi-
tional experiments may be planned. Future experiments, coupled with what was
learned in the first experiment, will allow the SEL to better understand and assess
the Cleanroom methodology and its applicability in the FDD environment.

5794 A. Kouchakdjian
Univ. of MD
6 of 22

-

-y

1 "

vl e

VIEWGRAPH MATERIALS
FOR THE
A. KOUCHAKDJIAN PRESENTATION

5794

I

+olill

uhil

L 3d”ns

6861 ‘6¢ HIGWIAON

ONVIAHVIN 40 ALISH3AINN
I1isva JIA

J4SO/VSVYN
N33HO 1100S

ANVIAHVIN 40 ALISH3AINN
NVIFAMXVHONOM VHY

13S 3HL NI ADOTOAOHLIN
INOOHNV3TO 3HL 40 NOILLYNTVA3I

100°SSD

A. Kouchakdjian
Univ. of MD

7 of 22

¢ aanns

T00°55D

TVYAOWN3Y NOILLN3IA3Hd
103434 LON 103430
(INFWSSISSY 1ONAOHd)
Alnigvinayd

F18VIdILH30 HLIM FHVYML40S 30NA0Hd e

(TOHINOD TYNOILYZINVOHO)
SH31S31 ANV SHIdO13A3A ILVHVJ3S o

(3ONIT130X3 TYNOISSIIOHd)

ONIDONG3d NVHO0Hd a3dilv
H3LNdIWOD NVHL H3HLVH NOILVYDIdIH3A
WVHODOHd NI 3NINdIOSId NVWNH 3ZISVHANS e

"S10NA0YHd IHVYML40S 318VIN3Y 40

NOILONAOYd FHL NI DNILLINSIH ‘FWIL LSHI4 SHL JHVMLIO0S
193HHOI DNIONAOHd NO SASNI04 LVHL (WEI) STIIN NVIHVH
Ol d3.1Ngi4LlVY ININdOTIAIA IHVMLHO0S 40 AOHLIN V

INOOHNVITO

A. Kouchakdjian
Univ. of MD

8 of 22

€ 3ai1s
€00°55D

TOHINOD NOILYHNOIINOD TV.101
3002 31NO3X3 ANV MNIT ‘TNJWOO SHILSIL e

AINO LNINWNdOTIAIA dOLXMS3IA
SAWVHANIVIN O1 SS300V ON 3AVH SH3dO13A3Q e

A. Kouchakdjian
Univ. of MD

9 of 22

WvalL
1s3lL S1SATVNY
Sis3L 3
IONV.Ld300V e 0O o

oSS M 3000 Q3IHIH3A NDIS3q G3I4IH3A
TOHLINOD ————
[NOLLVHNDIINOD 1HOJ3Y 34NIv4 =ondos ‘K
ALMigvnay SHILSIL SH3dO13A3A

A34UNSYAW HLIM SININIHIND3Y
WVYHOOHd gj1g3) «- S1INS3y

SS300dd
ININdOTIAIA NOOHNVITO FHL

¥ 3ans

¥00°550

SLN3IWNOHIANG H3H1O0
NI ATIN4SS3O0NS A3INddV N338 SYH WOOHUNVY31O

A. Kouchakdjian
Univ. of MD

10 of 22

SINIWWOD IHOW avH 3409 -
3A02 X31dWOD SS31 @3LVHINTD -
H31139 SINIWIHINOIY a31I41Nd -
S3SVYD 1S31 JHOW Q3ssvd -
:SdNOYD WOOHNYI1D e
(3SYNOD 13A3T 00%) INIFWIHIAAX3 AITIOHINOD e

‘NVIAHVYIN 40 ALISH3AINN

139dNg ANV 31NA3HOS NIHLIM

HLNOW 44V1S/001 ovZ - ALIALLONAOYd HOIH
O013X/SHOHYH3 ¥'€ - 30D ALMVYND HOIH
10NA0Hd IOVNONYT D013 08

SNOILLYDIddV NOOHNVY3TO SNOIAIHd

S 3A17S
900°'55

ADOTOQOHLIANW
NGOt ONy SeaO0M T s oo L0432 SHOMIY TZNNIN &
10NA0Yd ANV SS300Hd WOOHNVID JHVANOD o 3NIL ©NE3A ANV 1S31 3SV3LO3q o 1S
15NdoHd IJHYMLIOS 40 ALMIGVIIIY ANV ALAVNO 83
ANV SSI00Hd WOOHNYITO 3ZIHILOVHVHO @ 3SVIHONI ATLNVOIHINDIS OL VIINILOd o <E
LNINSSASSY SSIAD0Hd LINIINFAOHdNI 12NA0Hd

(LININJOTIAIA FHYMLIOS 73S 40 AHOLSIH NO g3svs)

SAOW O3dS o

NOIS3a3Y e

SIONVHO e
SHOHYT e

AHOM3H

NDIS3d

-ATIVOIdAL

LN3INIH3IdX3 73S HO4d SNOSV3d

11 of 22

V1va 103rodd
73S QYVANVLS

JON3IIHI4X3 FHYMLHOS
JOVHIAV SHYIA ¢

NOILYONddV Oi4103dS
HLIM 3ON3IH3dX3 LSHId

(ONINIVHL)

WOOUYNY3TO 40 3SN 1SYld

O0TSH €2

SHY31S3l ¢
SH3dO013A3A €

SNOSHY3d O4SD S

W3L1SAS Wl
NV HO4 NVH1HOA

W3LSAS 1HOddNS
SOINVYNAQ LHONA
VY 40 W3L1SASANS

9 3a1S

Q31037100
V1vQ

FONFHILE
WvalL

FYNLONKLS
Wv3L
WY3a1

ANSNNOHYIANS

WN31SAS

ININIH3dX3 FHL

e i

L00°S$D

A. Kouchakdjian
Univ. of MD
12 of 22

.
\

i e

L 3dnns
800°559

6861 | 8861
NOSYPIPTWYWATrANOSYPIPWNY W4T

A. Kouchakdjian
Univ. of MD
13 of 22

ONINIVHL

NOIS3d

|

ONIQOO W
INIWdOT3A3Q

ONILS3L -
Wv3L

T1NA3IHOS 103rodd NOOHNV3TO

8 3AINS

$00°550

A. Kouchakdjian
Univ. of MD

14 of 22

ONILS3L Wv3IL 1S3L ANV 13s
ONILS3L LINNONY ©NIav3d INIWJOTIAIA TYOIdAL
TWNOILONN4 DNIGV3Y 3000 7ad JTONIS

HONIGV3IH 3d00 SM3IIAH SWVIL LS3L ANV | INOOUNYITD

ONILS3L INVAONNg3IY NOIS3d ANINJOTIAId 13s
TVOILSILVLS TVILNINO3S Wv3l J1VHYd3S
1S3l 3402 NDISZAd NOILVZINVOHO

—_—
SNOSIHVdINOD SS300Hd

6 3aINS

€00°5S0
1S31 WILSAS HONOYHL «

%2G-%8Y :NOOHYNV3TO 13S %S1-%S8 13S TVOIdAL
NMOQOXMY3HE DNIQv3d 3A0D - DNILIHM 300D e

WOOYNYZTO HLIM 1HO443 NDIS3A A3ISYIHONI @

A. Kouchakdjian
Univ. of MD

15 of 22

%9¢
43H10

%EE
NOIS3a %€¢C
NOIS3Ad
NOILNGIH1SIa NOILNGIH1SIA
140443 73S vOIdAL

1HO443 WOOHNY310 138 | HO44T

+S103MOHd 13S TVOIdAL HLIM NOSIHVYdINOD

" W [T T [4 ([T W (o LI g Lol (Ll [[» » L3 » 1 L] " A

0l 3AINS

1S31 WILSAS HONOYHLx 90589

31VH H31SV4 V 1V MOHYD 1N9g
'HILV1 HVY3ddV OL NID3g SADONYHO ANV 300D

a3131dWOD 103MO0Hd 40 3DVIN3OH3d a3137dNOD 103roHd 40 3DVINIOH3d
00t 08 09 ot 0c 0 0ot 08 09 ot 0¢ 0
T T T T 11 TTTT1]0 3 TTTT] 10 3
v} e
N 2 . 9]
- WOOUNVITO . m
ez Z 138 Joz Z
WOOHNYITO _ >] >
o)
138 - @ - m
10 » 400 o
103roHd _ o _ X
73S TWOIdAL n o _ 3
19 I 103roud 1% g
] z 73S WOIdAL i o
10 & Joe 2
_ Z N O
- z 1 S
00l m ook §
JNIL HYANITVO A9 STFONVHO WILSAS JNIL HYANTTYO A9 HIMOYD WILSAS

HLMOUD INFLSAS

*S103rodd
73S TVOIdAL HLIM NOSIHVdINOD

A. Kouchakdjian
Univ. of MD

16 of 22

COMPARISON WITH TYPICAL SEL

PROJECTS*

COMPUTER USAGE

43
— [
=1 [l

Il

GRO GOES COBE CLEANROOM

CLEANROOM USED LESS COMPUTER RESOURCES

THAN TYPICAL SEL PROJECTS

css.o10 - THROUGH SYSTEM TEST

Ji

0 < @ N T e
oooooo

OOT1SHM/SHNOH NdD

35

=
o
Qo
o
3
—J
o
Ll
@
Q
o
7}
w
O
O}

? [T

o o o
o =)
AN

-

OO0TISH/SNNY H31NdNOD

A. Kouchakdjian

SLIDE 11

COMPARISON WITH TYPICAL SEL

PROJECTS*

ERRORS - CHANGES - PRODUCTIVITY

CHANGES PRODUCTIVITY

ERRORS

4.9
CLEANROOM

TYPICAL SEL

SEL
PROJECT

g

ai

| O o I I I I I |
© 0 <+ MO N = O

HNOH 44v1S/001

CLEANROOM

<r
-

TYPICAL SEL

SEL
PROJECT

4

1 11 1 1 1
n O

N
]]
(= w0
[4V] ™

OOTISH/STONVHI

w
AN

CLEANROOM

2.7

4

Lt et riti
O N O© I ON ™ O

001SM/SHOHHT

TYPICAL SEL
SEL
PROJECT

=5?

CLEANROOM COMPARES FAVORABLY WITH TYPICAL SEL PROJECTS

*THROUGH SYSTEM TEST

C55.011

ouchakdjian
niv. of MD
of 22

SLIDE 12

€L 3anns

1S31 W3LSAS HONOYHL, 059
140443 YHOM3Y 13S TVIOIdAL A3IDONAIH WOOHNYI 1D

A. Kouchakdjian
Univ. of MD

19 of 22

NDIS3d
NOlLngIdLsia NOILNEIHLSIA
140443 WOOHNVITO 138 1H0443 73S TVOIdAL
AHOM3H

+S103MOHd 13S TVOIdAL HLIM NOSIHVdINOD

"TOHLNOD NOILVHNDIINOD HIANN JNVYDI 300D 3HO439 ANNOL S11NVd 40 %.8 e

[ty 3 WA NI) - [(N e LN [l] BRI] JIrN ! [[ULl W LR

vl 3aQ17S

pil

'SIHNSYIN F19VHOAVA SMOHS WOOHNVITO 40 3SN 1SHId HNO

£10'59D

3SVO 1S31 1SHI4 40 NOLLND3X3 3HO439 ANNOd S11NVd 40 %16 o

A. Kouchakdjian
Univ. of MD
20 of 22

SLINV4 TVIIH3TO-NON G3ANIVLNOD S3ITNAOW 4O %9 ATNO e

3INO NVHL ‘JAILO3443 IHOW 3HVY SHIAVIH OML
- SH3AVY3H 3000 H109 A8 ANNO4 S1INVL 40 %62 ATNO o

%y
NOWLVIIdWOD %€
SISATVNV-3H
H3d4073A30
%S
DNILS3l
BNIgv3y
3000
N %EE
SM3IAIH

NDIS3a

ALIALLOV T04H1LNOD ALITVNO
A9 NOLLNgIH1SIa 11nvd

Crrrm e e) Tomet e

Sl 3anlns

t10°SSD
g
5n
Q3103r0Yd - « £2.
° o
S
%S %E % %S %EE :ONNO4 SLINVS TVLOL 40 INJOH3d < &=
9291 09 95 g9 co8 V268 :517NV4 40 HIGWNN TVLOL
% %S %2 %0 %9 %0 SAV1dSIa
%6 %91 %E %0 %6 %0l NOLLY.INdWOD =
%02 %52 %28 %0 %ZE %0 35N Y.1va =
C
%92 %8 %8 %0 %61 %S NOILYHY103Q Y1va 3
% %8 %8 %0 %S %1 NOILYZIMVILINI ¥.1va S
%02 %ee %SH %0 %L1 %2 JOVAHILNI m
%2l %8 %S %0 %8 %02 MO TOHINOD
%9 %0 %0 %001 % %0 XV.INAS NYHIHOS
:STVLOL ONILSAL SISATYNY-3H NOILYIJWOD DNIGvIH SMIIAIY
H3dO13A3a 3000 NOISad
ALIALLDY

ALIAILOY TOHLNOD
ALITVNO A9 NoOlLNgld1SIa 11nv4d

9l 3aANS

510'980

SS3SSV3H e

S.1H0443
NOILLONAOHd 13S TVNOILIAAVY OL AlddV3H e

HOVOHddV ONILS3L -
HOVOHddV NOIS3A -

LN3IWNOHIANST 13S
114 431139 O1 SS300Hd HO1IVL o

SISATVYNY LN3HHND 3L31dWOD o

¢1X3N S LVHM
13S 3HL ANV NOOUNVY31O

A. Kouchakdjian
Univ. of MD
22 of 22

L

SESSION 2 — METHODOLOGIES
M. S. Deutsch, Hughes Aircraft Co.

B. I. Blum, APL
H. D. Rombach, University of Maryland

5794

" o LW B P I "I W)| e——

IS

PREDICTING PROJECT SUCCESS FROM THE SOFTWARE
PROJECT MANAGEMENT PROCESS: AN EXPLORATORY ANALYSIS

Michael S. Deutsch
Hughes Aircraft Company
c/o Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
Sponsored by U.S. Department of Defense

Abstract

The paucity of significant empirical data relating the software management process to quantitative
project performance is the motivation for this study. A conceptual causal model characterizes the factors
of adversity that may be present on a project along with the factors of management skills that are available
to neutralize or overcome the adversity; the residual effect, called net turbulence, is hypothesized to
relate quantitatively to project business and technical performance. An informal exploratory data analysis
on 24 projects has been undertaken to determine the feasibility of the conceptual model and to identify
more precise hypotheses for more formal study. The non-parametric coefficients of correlation for net
turbulence and both project technical and business performance are 0.65, suggesting that the basic
hypothesis of this model is feasible. Other interesting relationships involving risk management, project
adversity, business constraints, and precision of technical scope definition deriving from the exploratory
analysis are discussed.

BACKGROUND

Large contemporary R&D engineering projects for a wide variety of systems
such as communications, process control, command and controi, large scale data
retrieval, and military applications are becoming increasingly software intensive,
challenging human capacity to manage resulting intellectual complexity. The relative
immaturity of the software engineering discipline has injected new uncertainties in
human, business, and technical variables into these projects. There is relatively little
empirical basis beyond the experience of individual managers to connect models of
software project management with actual levels of success achieved. The approach to
managing large scale intellectual efforts involving, perhaps, hundreds of people on
software intensive systems has been based almost entirely on theory-based,
anecdotal, or single-case study considerations rather than on any systematic empirical
investigation into what factors actually contribute to positive software project
performance. This paper describes an empirical study that addresses this gap.

A conceptual model of the software project management process is set forth that
is asserted to relate to actual project performance. The scope of this paper is to: 1)
describe this model; and 2) present an exploratory investigation that seeks to establish
the feasibility of the conceptual model and sharpen its associated hypotheses. The
longer range goal is to evaluate the predictive validity of the software management
process on project performance through prospective observations from ongoing
projects; but this will occur over a number of years. At present, the more modest and
practical goal is to determine this feasibility based upon concurrent validity of
retrospective data from completed projects. The exploratory feasibility analysis is

M. Deutsch
Hughes
1 of 38

Ll

N

based upon data from 24 projects that was informally collected; this exploratory
analysis is in itself encouraging and interesting.

The intent of this investigation is to identify factors that discriminate between
successes and non-successes on software projects. By looking backward from a
successful result, a broader view of the management and technical actions that
achieved the success can be viewed and contrasted against those from less
successful projects. Unfortunately, measuring success in the traditional dimensions --
technical, schedule, and cost performance -- is frequently an inaccurate gauge by
itself. The novelty content and technology demand of large, software intensive
systems frequently yield results that are less than full expectations (in the traditional
dimensions), yet many projects are considered successful nonetheless especially
when an adverse and difficult project situation is at least partially overcome. This
study probes into these further aspects of success by characterizing the factors of
adversity that may be present in the project environment and the factors of
management skills that may be put forth to manage and overcome this adversity.
These are then related to both project technical and cost/schedule performance
factors.

This empirical study is outlined in the following paragraphs by recounting
related studies, defining the conceptual model and its components, delineating the
causal hypotheses associated with the model, and summarizing an exploratory data
analysis of 24 projects.

RELATED STUDIES

Practically all previous empirical research and investigation into project success
factors have embraced a broad non-specific scope of general project situations such
as construction, equipment, studies, services, or testing. Only a small subset of these
studied projects appear to be of an R&D nature. Even less attention has been
attributed to software projects.

The most prolific recent researchers in this field have been Pinto and Slevin.
Among their contributions has been the development of a project implementation
upon a ten factor management process model. Schultz, Slevin, and Pinto have
documented [3] a sample of five attempts by different researchers to determine critical
success factors from which it is possible to discern some general factors. Pinto and
Prescott [4] have further examined a set of five basic hypotheses embracing the ten
factor project implementation profile against 408 projects from the manufacturing and
service sectors; the results indicate that the relative importance of several of the critical
factors change significantly over the project life cycle. Murphy, Baker, and Fisher [5,6]
have studied 646 projects, primarily manufacturing and construction, illuminating
those positive determinants and those negative determinants that are necessary to be
encouraged and discouraged respectively to achieve potential success. The classes
of projects involved in these studies render the results interesting, but they are
applicable to R&D software intensive projects only in the most general sense.

M. Deutsch

¥ ¢ Hughes
- 0« 2 of 38

One significant investigation of success factors for software specific projects is
the study by Curtis, Krasner, and Iscoe [7] of 17 large client projects of the
Microelectronics and Computer Technology Corporation. Their findings, concluded
from an interview process, focus on the richness of application domain knowledge,
fluctuating and conflicting requirements, and communications bottlenecks as the
factors most influential on success. Another study of partial pertinence is the
methodology for identifying critical success factors for management information
systems developed by Boynton and Zmud [8].

A related area of activity over the past decade has been the development,
maturation, and practical usage of parametric cost estimation models for software
projects. These models address project success factors in a limited sense by
predicting labor effort, schedule, and productivity based upon inputs of project size
and characteristics. The modeis and associated investigations conceived by Boehm
[9], Jensen [10], and Vosburgh, Curtis, Wolverton, et al [11] are representative of this
work.

None of the cited related studies have attempted to broadly relate success
factors in the software management process to quantitative project performance. This
is a major goal of the study described in this paper.

CONCEPTUAL MODEL OF PROJECT SUCCESS

A hypothetical model relating project performance to the project management
process was conceived by the author and refined as a result of consultations with
colleagues in industry and government. The major thesis of this model is that project
performance can be roughly predicted based upon how effectively the "power" of the
management process cancels out the adverse attributes of the project; the residual of
the cancellation effect between the management power and project adversity is
referred to as the "net turbulence" of the project. The structure of this hypothetical
model is displayed on Figure 1. The major hypothesis of the model is that the
predictive measure, net turbulence, should be strongly correlated with the dependent
measures of project success, technical and business performance.

The model is intended to depict the collective behavior of the three major
parties who collaborate during a software system development: the eventual user of
the system, the customer who financially sponsors the development, and the
contractor who performs the system development. These three constituencies may be
separate agencies, or they may belong to the same company or organization.
Whatever the organizational configuration, the three roles are invariably identifiable.

Project adversity represents "facts of life" over which the three parties have, at
best, a secondary level of control. Management power, on the other hand, symbolizes
those factors where a primary level of control exists within the three parties at the
project management level. The more detailed causal relationships between these
variables reflecting the formation of the net turbulence parameter is presented shorly.

The factors associated with technical performance, business performance,
project adversity, and management power are delineated on the figure and defined
below.

3

M. Deutsch
Hughes
3 of 38

ol

Size
Character
Interfaces
Business Constraints
Technical Constraints

Cost

Project
Adversity

Business
Performance

Schedule

Net
Turbulence

Personnel
Resources
Dialogue
Scope Definition
Risk Management

User Satisfaction

Technical
Performance

Mahagement
Power

Requirements Planning/Control
Achievement
Interface Management
DEPENDENT PREDICTIVE
MEASURES MEASURES

FIGURE 1: HYPOTHETICAL MODEL OF
PROJECT SUCCESS

Technical Perf E r Definition

1. User satisfaction. The degree that users of the system were satisfied by

system performance.

2. Requirements achievement. The degree that the specified functional,
performance, external interface, operational scenario, and quality
requirements were satisfied.

Busin rformance F r Definition

1. Cost performance. The percentage variance between projected and actual

costs.
2. Schedule performance. The degree that key schedule milestones were

achieved.
Project Adversity F Definit
1. Project size and character. The magnitude of the system product developed
and its attributes that reflect internal difficulty and complexity.

2. External interface adversity. The attributes of the system that reflect
complexity of interactions with the surrounding external environment.

4 M. Deutsch
Hughes
4 of 38

3. Business constraints. The realism of the cost and schedule budgets for the
project. ,

4. Technical constraints. Maturity and accessibility of the technology and
process available to accomplish project tasks.

M P E Definiti

1. Personnel resources. Quality and retention of personnel across the project
phases.

2. Physical/technical resources. Quality of the discretionary physical and

technical resources assigned to the project.

User/customer/contractor dialogue. The degree and frequency of the

mechanisms that the three parties used to conduct an on-going

collaboration.

Technical scope definition. Clarity, scope, and stability of technical

requirements.

Strategic risk management and planning. The scope of strategic planning

measures for life cycle planning and risk reduction.

Project planning/control. The scope of tactical measures during project

implementation for business, technical, and risk visibility and control.

External interface activities. Provision of appropriate activities and process

steps for interactions with elements external to the system.

w

N oo o &

THE MANAGEMENT POWER SUB-MODEL

For heuristic purposes, a sub-model of the management process was
constructed based on the seven management power factors defined above. This sub-
model is shown on Figure 2. Conceptually, these factors or major activities tend to
occur in a certain order while controlling the technical development. They embrace
the traditional management functions of planning, organizing, staffing, directing, and
controlling. It is recognized that some concurrency and iteration are present in the
general pattern indicated on the diagram. Significant revisiting of previous plans and
baselines may occur at each major activity as a result of a continuing dialogue
between the user, customer, and contractor. Breakdowns in this communication
process have been a major cause of unfulfilled project goals [6]. Paramount to this
management process is the influence of this dialogue in temporally adjusting the
definition of the technical scope as the project's needs become better understood. |t
can be argued, on an anecdotal basis, that misdefined technical scope is a major
source of risk for software intensive systems [12].

Each of the seven management power factors are described below in more
detail. The significance of the factor is discussed and a number of considerations and
issues component to that factor are raised. These considerations and issues
represent questions that project management should be analyzing beginning with
project conceptualization to judge whether the power of the management process can
overcome the project's adversity. Each question has a scale of discrete responses,
not indicated here, that was included in the informal questionnaire used to collect
exploratory data.

5 M. Deutsch
Hughes
5 of 38

i |l a

The initial step of management planning should entail selection of a life cycle
plan of phases appropriate to the risk and adversity level of the project including, for
example, consideration of risk reduction measures such as concept exploration
phases and/or prototyping. This level of planning may occur before there is a

commitment to project implementation.

Considerations:

« Which risk reduction measures were included in the project life-cycle before

commitment to full-scale development?

» Is a life cycle cost analysis part of the scope of work?
« Are user operational staff levels included in system tradeoffs?
« [s a design-to-cost approach part of the system tradeoffs?

User/customer/contractor
dialogue

Strategic risk

and planning

- management e

Technical
scope -
definition

Personnel
resources

Project
planning/
control

Physical/
technical
resources

External
interface
management

FIGURE 2: MANAGEMENT PROCESS MODEL

Technical S Definition F

controlled way.

Considerations

How well are functional requirements specified?
How well are performance characteristics specified?
How well are operational scenarios specified?
How well are system qualification requirements specified?

~ Although the technical scope definition may be time varying, there should exist
a baselined consensus between user, customer, and contractor that evolves in a

M. Deutsch
Hughes
6 of 38

* How well are operational personnel and post deployment support
requirements specified?

How well are computer-human interface requirements specified?
How well are quality requirements specified?

Are requirements under change control?

Personnel Resources Factor

A clear issue here is the initial selection of personnel with the right blend of
applications expertise and functional disciplines. Selection of personnel invariably
requires a negotiating process. Neglect of this factor defaults to use of people who are
conveniently available regardless of their value to the project [1]. Another major
consideration is the retention of a skilled cadre of personnel who remain on the project
through testing and at least initial post deployment maintenance.

Considerations:

« To what degree are personnel experienced in the required functional
disciplines available?

* To what degree are personnel experienced in the required applications

areas available?

How skillful is the contractor project manager?

How skillful is the customer project manager?

How skillful is the user representative?

What is the skill level of the engineers/application experts who remain on the

project through testing and transition to operations?

* How sufficient is the engineering and application expertise of the initial post
deployment maintenance team?

PhysicalTechnical B E

These are the resources that constitute the environment that surrounds the
project development. Management usually has a primary level of control of selection
of these resources.

Considerations:

* How mature is the selected computing hardware and support software?
» How mature are the software engineering support tools?
* To what degree are the needed facilities available to the project?

Project Planni | Control F

The monitoring, feedback, and risk control mechanisms in this factor give
management the visibility into evolving problems and ability to oversee corrective
actions.

M. Deutsch
Hughes
7 of 38

1

e,

Ldlid M

Considerations:

Is there a project function (e.g., a system engineering team) with central
responsibility to define technical requirements, perform technical tradeoffs,
assess risk, and evaluate evolving products?

Is an actual rate of technical accomplishment periodically compared to a
planned rate?

Has a set of risk parameters critical to project success been delineated and
periodically reviewed?

Are estimates of cost and schedule for the completion of the project
periodically assessed and updated? o

s there a prioritized ranking of technical requirements mutually recognized
by user, customer, and contractor that is periodically updated and reflected in
incremental development plans? ' '

Are user operational scenarios included in system and acceptance testing?

rf iviti r

This factor includes activities to assure that the project interacts with and
understands the needs of the larger external environment. This is especially critical for
embedded software systems.

Considerations:

Is there an on-going liaison with suppliers of other interfacing
systems/elements to assure proper interfaces and allocations?

Is early external interface testing with outside systems part of the integration
plan? o o ,

To what degree are externally provided elements validated?

How frequently were external interfaces modified before the preliminary
design review or equivalent?

How frequently were external interfaces modified after the preliminary design
review or equivalent?

mer/Contr ial F

Each of these parties may have diverging goals with each not fully cognizant of
the others' constraints. The dialogue process addresses the reconciliation of these
goals to promote a win-win situation satisfactory to these constituencies. Boehm's
Theory-W for software project management establishes principles for this dialogue

[13].

Considerations:

- If multiple user organizations are involved, how well are users’ needs being

managed and reconciled?

« To what degree is there ongoing collaborative contacts between user(s),

customer, and contractor to assure the correct content is in the technical
requirements?

« To what degree does the user(s) participate in formal design reviews?

8 M. Deutsch
Hughes
8 of 38

[ALY L LN - munin "

;e m

» Are the user(s) and contractor represented on the customer's change control
board?

 Is the user-customer-contractor interaction addressing a post deployment
<unnort approach?

THE PROJECT ADVERSITY SUB-MODEL

The effect of the five adversity factors noted on Figure 1 - project size, project
character, external interfaces, business constraints, and technical constraints - offset
the management power factors to estimate the net turbulence of a project. A causal
effect schema between the adversity variables, management power variables, and
project performance is outlined momentarily. The considerations of each adversity
factor are delineated below. These also have a scale of discrete responses not
reproduced here.

Proj i nd Ch

The sheer magnitude, complexity, and difficulty of the system is a reasonable
first approximation of adversity.

Considerations:

« Approximately how many new lines of source code must be developed?

« How many distinct user agencies or organizations are involved?

« How many parallel operational versions of the same software for separate
installations must be maintained?

What is the degree of user interactive operations?

How complex is the overall architecture of the system?

If the software of this system failed, what would be the most severe impact?
What degree of new technology (e.g. algorithms, security, protocols)
development is required?

* How stringent are the real-time aspects of this system?

External Interface Adversity Factor

A major aspect of complexity and advérsity is the degree that this system must
interact with outside systems and elements.

¢ & o o

Considerations:

« How many major external systems or elements does this system integrate or
interoperate with? .

+ How many of the above interfaces require real-time or on-line
synchronization?

* To what degree did externally supplied components meet technical
expectations?

+ How many interoperating systems or elements are undergoing development
in parallel with this system?

9 M. Deutsch
Hughes
9 of 38

Busi C ints Facl

A major challenge of project management is to achieve a balance between
technical scope and assigned cost/schedule resources. When the cost and schedule
are insufficient to meet the technical requirements, heroic and skillful management
efforts become necessary to achieve even a partial success. Project managers
usually understand the severity of the imbalance even at project inception, but may not
be able to influence a more favorable balance because of various contractual,
political, or business factors.

Considerations:

« How sufficient was the original cost baseline for this project?
« How realistic were the original key milestone dates for this project?

Another source of adversity is the availability or scarcity of technical resources.
Considerations:

» How mature is the technical software engineering process used by the
developing organization?

« How adequate are the available computer resources for field operation of the
software? ,

» How adequate are the availabie computer resources for development of the
software? '

« Are the implementation standards a good fit to the size, type, complexity, and
criticality of the project? e ' o

PROJECT PERFORMANCE SUB-MODEL

This sub-model embraces the business performance and technical
performance factors which are shown on the left side of Figure 1. The considerations
of each performance factor are delineated below. These questions also have a scale
of discrete responses. :

Cost and Schedule Performance Factors

Recounting both cost and schedule performance data is problematic because
many projects undergo technical, cost, and schedule scope changes before they are
completed. Changes to these baselines occurring late in the project may simply reflect
the de-facto situation that cost/schedule and technical scope were imbalanced
previously, and the change merely formalizes a reality that had been present for some
time. Hence, use of final recorded cost and schedule variances could be an
inaccurate gauge of business performance. Recovery of useful business performance
data may necessarily rely on the subjective recollection of the survey respondents. A
general guideline is that cost/schedule performance information is desired that
represents the predominant baseline that existed over the longest duration of the

10 M. Deutsch
Hughes
10 of 38

-m

-

project's development cycle. A more specific guideline is to estimate cost/schedule
performance against the last project baseline change before the midpoint of the
development schedule; this should discriminate "intelligent” scope changes from late
reactive changes that might mask the true variances.

Cost performance factor consideration:

» To what degree did this project meet cost targets for its predominate budget
and technical scope baseline?

Schedule performance factor considerations:

+ To what degree were key integration milestones with interoperating systems
or external elements achieved on schedule?

» To what degree did this project achieve its initial operating capability on
schedule?

User Satisfaction F

The most obvious and visible issue of success is user acceptance of the system.
This is key whether the user is external or internal to the organization that developed
the software. User satisfaction may change over time as modifications are made
based on initial operational experience.

Considerations:

+ How satisfied were the users with system performance at initial delivery?

* How satisfied were the users with system performance six months after initial
system delivery?

« How satisfied are users with system performance today?

Requi Achi E

Achievement of requirements does not necessarily guarantee user satisfaction
especially if the requirements do not accurately represent the user's needs. In this
investigation it is important to understand the interplay between user satisfaction,
requirements achievement, and the user/customer/contractor dialogue with respect to
project success.

Considerations:

To what degree were specified functional requirements satisfied?

To what degree were specified performance requirements satisfied?

To what degree were specified external interface requirements satisfied?

To what degree were specified user operational scenarios satisfied?

To what degree were specified quality requirements (e.g., reliability, security,
safety, maintainability, expandability, etc.) satisfied?

11

M. Deutsch
Hughes
11 of 38

[

[IEERN NN

CAUSAL RELATIONSHIPS AND MODEL HYPOTHESES

The specific causal relationships between the adversity factors, management
power factors, and project performance are delineated here. These relationships
provide the structure for the formation of the net turbulence parameter that is
hypothesized to relate significantly to project performance. During the conception of
this causal model, it became necessary to envision the interaction of project adversity
and management power at a more detailed level involving the individual
considerations of some of these factors.

These interactions, constituting net turbulence, are diagrammed on Figure 3.
The additional pseudo-factors of business risk management, technical risk
management, external interface management, and user need management are
introduced to detail the combination of adversity and management power parameters.
The business risk management pseudo-factor is representative of this combinatorial
concept. Here, business (cost/schedule) constraints were identified as a key adversity
aspect that must be managed and controlled. The items that are hypothesized to
overcome this type of adversity are a clear technical scope definition and the existence
of a set of prioritized requirements that are incorporated into incremental development
plans; these would help achieve a working partial system within the cost/schedule
constraints.

The other pseudo-factors follow this same concept of identifying a specific
adversity that must be controlled and hypothesizing the specific management
variables that would neutralize the adversity. There is much to recommend in this line
of thinking as an operational model for software project management.

The remaining management power factors of user/customer/contractor
dialoguse, personnel resources, physical resources, strategic planning, and project
planning/control are hypothesized to have a general positive impact on project
technical and business performance. Likewise, the remaining project adversity factors
of project size/character and technical constraints are forecast to generally influence
project performance negatively. The combined effect of these factors and the pseudo-
factors is the net turbulence.

Figure 3 shows forward feeding paths to project performance labeled with "+" or
"." characters signifying the direction of contribution to performance. Also included are
feedback loops that suggest the key dynamic interactions between parameters that
would cause variation over project lifetime. There may be potential and value to
eventually construct a system dynamics model of the broad software management
process based on these causal relationships. At present, however, the compelling
need is much more fundamental: to understand the degree of influence of
management variables and project attributes on the technical and business
performance of projects.

In summary, the basic hypotheses for exploration are stated below in natural
language:

12
M. Deutsch

Hughes
12 of 38

a um mm

A ENM

SJIHSNOLLV 134 VSNV DNIATHIANN :€ 3HNDIS

] Buiuued oibsjeng
+

Jouod pue Buiuueld yosloiyg

(+)
A\\\?\v\mmo_:omﬁ eoisAyd

~4—————S380JN0S3I [BUU0SIad

(+)

|—————SJUIBJISUOD [BOIUYOD |

()

~——(y— Jeweleyo pue azis 100/01 g ~=—

M. Deutsch
Hughes

T salousbe Josn # /
& Juawabeuew pasu Jasn aidiiny SOIAIOE UOHBINOLO
J«I IAIJOB uoleljlouoday .
Aisi1enpe 4/] jeussixg
‘\\\l\dl H
|——— Juawiuabeuew asepd)ul [RUISIXT
(+) ~r salAnoe Jwbw 4|
\\\\\I\Alﬁu Buuoyuow ysiy !
+ : : H ™
uawdojansp >mM_ocHﬂ_. A
Juawabeuew Ysi [E21UYII | <4— @) |
(+) ~— oy voneBmu s
-—) Shuielsu0d w“u”_w:y "
@) Juswabeurul YSII SSaUISNG G uoniulep adoos [eoIuyos |
I{al uonezyuoud syuswail

v

oy anbo|elp JOJOBLUOD *JBWOISND ‘19S()

[

@

13 of 38

(M [

TR F)

1. Degree of business risk management - consisting of the net effect of
business constraints, technical scope definition, and requirements
prioritization - has a significant positive effect on project performance.

2. Degree of technical risk management - consisting of the net effect of
technology development, risk mitigation measures, and risk monitoring - has
a significant positive effect on project performance.

3. Degree of external interface management - consisting of the net effect of
external interface adversity and interface management activities - has a
significant positive effect on project performance.

4. Degree of multiple user need management - consisting of the net effect of
number of user agencies and multiple user reconciliation activities - has a
significant positive effect on project performance.

5. The degrees of user/customer/contractor dialogue, personnel resources,
physical resources, strategic planning, and tactical project planning/control
each have a significant positive effect on project performance.

6. The degrees of project size/character and technical constraints each have a
significant negative effect on project performance.

7. The level of net turbulence - consisting of the net effect of all the above
factors - has a significant influence on project technical and business
performance.

EXPLORATORY DATA ANALYSIS

An exploratory data collection and analysis on 24 projects was undertaken in
order to gain insights into the feasibility of the hypothetical model diagrammed on
Figure 1 and its associated hypotheses. The data collection instrument was an
informal, unvalidated questionnaire with content very similar to the factors and
considerations discussed in the prior sections of this paper.

The respondents to the questionnaire were an opportunistic mix of software
managers and senior engineers who are developers of software systems or customers
who sponsor software system developments. Some of the respondents had access to
their historical files while some did not. The data is thus of varying reliability. Hence,
any conclusions or insights from the analysis are solely exploratory to sharpen
hypotheses for further formal study. No inferential statistical meaning is attached.

The exploratory analysis is summarized here by navigating through the
relationships of the model depicted on Figures 1 and 3. The dependent measures of
success are examined first followed by a probing of the relationships between the
predictive and dependent measures.

Each respondent who filled out the exploratory questionnaire was asked to
indicate whether the subject project was considered to be successful or unsuccessful.
Figure 4 shows a plot of business performance score versus technical performance
score for 24 projects with a discriminating coding for successful and unsuccessful
projects as perceived by the respondents. The scoring was constructed simply by
projecting the respondents answer to the discrete choices of each question on to a 10
point scale (10 is most favorable, 0 is most unfavorable), averaging the responses for
each factor, and averaging the factors for the overall performance scores. The

14 M. Deutsch

Hughes
14 of 38

L T

L

e

graphical plot portrays the appearance of a bimodal distribution suggesting these key
issues:

» Respondents view successful projects, unsurprisingly, as combined technical
and business successes (note the aggregation of successful projects in the
upper right corner).

* Is there a perceived threshold of unacceptable business performance (at
about business performance score "5") regardless of level of technical

performance?
10—+ . . .-
9) .
8-
e
35 °T
Q
ez
Q
2e
AT RESPONDENTS’ PERCEPTION:
° « successful project
3. ° o unsuccessful project'
2
1
0 T 1 T 1 T I]] 1

|
0 1 2 3 4 5 6 7 8 9 10
BUSINESS PERFORMANCE

FIGURE 4: TECHNICAL/BUSINESS PERFORMANCE RELATIONSHIP

A "5" on the business performance scale corresponds to approximately a 25-50% cost
overrun and a 3 month schedule slip. The existence of a perceived threshold for
business performance on successful projects is identified as an additional hypothesis
for further study.

1
S M. Deutsch

Hughes
15 of 38

The overall thesis of the hypothetical model exhibited on Figure 1 is that there
should be significant correlation between the predictive measure of success, net
turbulence, and the dependent measures, business and technical performance. The
graphs of net turbulence against project technical and business performance, plotted
on Figure 5, visually shows a general and at least moderate correlation between these
variables. The Spearman non-parametric rank coefficient of correlation for technical
performance on these 24 projects is 0.66 and for business performance is 0.63. This
indicates that the probability of a chance correlation is less than 0.002, below the
traditional 0.05 threshold. This correlation level seems even more significant,
qualitatively, since the business performance (cost/schedule) component is inherently
"noisy" data because of the retrieval difficulties annotated previously. Thus, the basic
hypothesis that net turbulence should be significantly correlated with, i.e., predictive of,
project performance is evidently feasible and should, thus, be pursued further.

TABLE 1: COMPOSITE FACTORS/PERFORMANCE RELATIONSHIP

All projects High adversity projqcts

Technical Business Technical Business
performance performance performance performance

Net turbulence 0.66 0.63 0.66 0.77
Technical risk management 0.43 0.25 0.65 0.59
Business risk management 0.58 0.70 0.58 0.82
External interface management 0.50 0.62 0.51 0.72
Multiple user need management 0.59 0.60 0.70 0.49
User/customer/contractor dialogue 0.48 0.49 0.56 0.44
Strategic planning 0.30 0.02 0.42 0.41
Personnel resources 0.64 0.68 0.80 0.82
Physical resources 0.25 0.44 0.34 0.62
Projact planning and control 0.69 0.41 0.73 0.71
Project size and character -0.06 -0.34 0.07 -0.11
Technical constraints -0.48 0.27 -0.55 -0.28

A full report on the contributions to project performance of each of the composite
factors included in the causal model displayed on Figure 3 is enclosed on the matrix in
Table 1. This delineates the intercorrelations (Spearman coefficient) of these factors
against technical performance and business performance in two categories--all
projects and only higher adversity projects of score >0.5. The following observations
are made concerning the set of all projects:

16 M. Deutsch
Hughes
16 of 38

dIHSNOILY13H 3ON3TNGHNL 13N/FONVIWHO4HI 1O3rodd 'S 34N9id

9[qRIOAR] HONA'TNGANLLAN giqesoaejun 9jqeIOAR] HONFTAGINLLIN gigeroaeun
oL 09 0¢ oy 0¢ 0cC 01 0 oL 09 0¢ oy 0t 0cC 01 0
1 | |] I - | — I . 0 | | | | |] | 0
1 1
e N —C
° |M ° IM
-y ma -y
oG
=G = —G
+
. w» o
-9 Q3 -9
-/ . — [
3 —8
—6 ’ . .o —6
. 0o g 00 . . 01 . . o0 s * 01

TVOINHOAL

HONVINIOIIdd

M. Deutsch

Hughes
17 of 38

7

1

1. The strongest contributing composite factor to performance, overall, is
quality of personnel resources.

2. Other factors highly influential on performance are business risk
management, external risk management, multiple user need management,
and project planning/control.

3. Counter-intuitively, strategic planning and project size/character have a
lesser effect on performance than expected.

Some contrasting potential tendencies for higher adversity projects are:

1. Most factors display a larger performance influence than for the full project
set, especially degree of technical risk management, strategic planning,
physical resources, and project planning/control.

2. Counter-intuitively, project size/character exhibits a declining effect on
performance. A subset of the considerations that aggregate into this factor
do show more substantial performance relationships, particularly code
volume to be developed.

The above views on adverse projects suggest a further general hypothesis for
consideration: management power and its factors will be more significantly correlated
to project performance for higher adversity projects. This reflects the need for a more
complete and sophisticated management mechanism on difficult, complex systems.

The contrast between the general set of projects and adverse projects is
displayed in more detail on Table 2. The dozen individual consideration questions
(components of the factors on Table 1) most correlated to technical and business
performance are exhibited for each project category. The following key and interesting
observations emerge for the complete project set:

1. In integrating across technical and business performance, personnel quality
in three categories are significantly correlated with success - experience in
functional disciplines and applications, skill of test/transition team, and skill
of initial maintenance team. This illuminates the positive significance of
personnel retention as the project progresses from development into
operations and maintenance.

2. The existence of a central project function for technical definition and control
(e.g., a system engineering organization) appears as a major driver on
technical success.

3. Individual aspects of technical scope definition, user/customer/contractor
dialogue, interface management, and risk control are present as significant
performance contributors consistent with intuition.

The adverse projects exhibit many of the same tendencies as the full project set,
but also display some significant contrasts:

1. The drivers on business performance seem to be more influential overall.
2. Review of risk parameters and inclusion of user operational scenarios in
testing are greater determinants in both performance categories.

18 M. Deutsch
Hughes
18 of 38

TABLE 2: MOST INFLUENTIAL INDIVIDUAL MANAGEMENT CONSIDERATIONS

Technical performance (all projects)

« How well operational personnel/support 0.77
requirements specified

+ Engineering and application expertise 0.73
of the initial maintenance team

« Central project technical 0.66
definition function

» Management/reconciliation of 0.62
multiple users’ needs '

« Cost/schedule estimates for project 0.60
completion periodically assessed

« Skill level of team that remains on project 0.58
through testing and transition

* How well functional requirements 0.58
are specified
» Collaborative user/customer/contractor 0.57

contacts to assure correct requirements

* Actual technical accomplishment periodically 0.57
compared to a planned rate

* Risk reduction measures included in 0.53
life-cycle before full-scale development

* Set of risk parameters delineated 0.53
and periodically reviewed

* How well computer-human interface 0.53
requirements are specified

Technical performance (adverse projects)

* How well operational personnel/support 0.79
requirements specified

« Set of risk parameters delineated 0.78
and periodically reviewed

» Personnel experienced in required 0.73
functional disciplines & applications

+ Collaborative user/customer/contractor 0.72
contacts to assure cotrect requirements

+ Management/reconciliation of 0.71
multiple users' needs

+ Engineering and application expertise 0.70

of the initial maintenance team
« Skill level of team that remains on project 0.68
through testing and transition

» Central project technical 0.66
definition function

» How well functional requirements 0.65
are specified .

» How frequently external interfaces 0.65
modified after preliminary design review

« User operational scenarios included in 0.61
system testing ' B

» Cost/schedule estimates for project 0.58

completion periodically assessed

Business performance (all projects)

» Engineering and application expertise 0.73

- of the initial maintenance team

» Cost/schedule estimates for project 0.67
completion periodically assessed

» Skill level of team that remains on project 0.62
through testing and transition

« Personnel experienced in required 0.58
functional disciplines & applications

» How frequently external interfaces 0.54
modified after preliminary design review

+ Management/reconciliation of 0.52
multiple users’ needs

» User(s) and contractor representation on 0.52
the change control board

« How frequently external interfaces 0.48

modified before preliminary design review
» Prioritized ranking of technical requirements 0.46
reflected in incremental plans

« User(s) participation in 0.41
formal design reviews

« Collaborative user/customer/contractor 0.39
contacts to assure cofrect requirements

*» On-going liaison with suppliers of other 0.39
interfacing systems/elements

Business performance (adverse projects)

« Cost/schedule estimates for project 0.85
completion periodically assessed
. » How well operational personnel/support 0.76
requirements specified

19

» Prioritized ranking of technical requirements 0.75
reflected in incremental plans

+ How well system qualification 0.73
requirements are specified »

« Set of risk parameters delineated 0.71
and periodically reviewed

+ Personnel experienced in required 0.70

functional disciplines & applications
« Skill level of team that remains on project 0.66
through testing and transition

+ Engineering and application expertise ° 0.66
of the initial maintenance team :
« User operational scenarios included in 0.66

system testing B
* Actual technical accomplishment periodically 0.61
compared to a planned rate

* How well operational sccnarios 0.59
are specified ‘
» How well performance characteristics 0.58
are specified
M. Deutsch
Hughes

19 of 38

3. Technical performance is more influenced by interface stability, and
business performance is more affected by by ranking and incremental
development of technical requirements.

The individual characteristics of the adverse projects group seem to be representative
of the need for a more precise management process for these projects especially
regarding risk management, external interface management, and system testing.

Another. exploratory path is to examine sources of project risk and hypothesize
the management power variables that could successfully manage the risks. Two
major risk parameters are asserted to be:

« Unrealistically optimistic cost and schedule allocations characterized by a
"business constraints” rating, and
« Degree of technology development required for a project.

In the causal model depicted on Figure 3, the business constraint rating was
combined with the degree of technical scope definition and degree that requirements
were prioritized and included in incremental development plans forming the business
risk management pseudo-factor. An example insight into this interaction is on Figure 6
where project business constraint ratings are plotted against technical performance. It
can be seen that a full range of performances are possible when cost and schedule
allocations are severely constrained; a "10" is most unfavorable, indicative that a
miracle was envisioned when these allocations were made. The numbers plotted next
to each point reflect the precision of the technical scope definition; higher magnitudes
are favorable. There is now evident a tendency for the projects with severe
cost/schedule constraints (say, 7.5 or greater) to attain better performance when there
is better clarity of technical scope definition. It is likely on these projects that, despite
unrealistic cost and schedule allocations, management is better able to effectively
apply implement-to-schedule strategies when the technical goals are well established
and accomplish a reasonable level of success despite the adversity. The
requirements prioritization ratings, enabling implement-to-schedule strategies,
overlaid on this same graph show a similar tendency. An analogous drift is also
present for business performance. The correlations of business risk management with
the various performance categories are rather significant as indicated on Table 1.

An analogous insight is depicted on Figure 7 where the technology
development rating is plotted against technical performance. A full spectrum of
performances is seen to be present. The overlaid numbers represent the additive
effects of risk mitigation activity and degree of risk monitoring. There is apparent a
tendency for the better performance projects to be associated with higher combined
risk management/monitoring ratings. The net effect of these three parameters is the
technical risk management pseudo-factor included in the causal model on Figure 3.
The correlations of this factor with the various performances was shown on Table 1
with the high adversity projects much more significantly affected. '

These are but two examples of a multitude of multi-factor causal relationships
that present opportunities for study.

20 M. Deutsch
Hughes
20 of 38

CLCEED

10,86 9.1 6.2, 6.2 5.8

7.1 * 63%.0
9— - 63%2 o6.4
5.7 75,
48 A4.3
8-—1
7_.4.6 73 74 03.0
2Z 6 L4
e
Z g 5—
58
B 4-
& 022
- 02.5
3 03.8
Overlays are technical
2 .
scope definition factor
l — .
0 T T) T T T T T T

H
0 1 2 3 4 5 6 7 8 9 10
favorable BUSINESS CONSTRAINT RATING unfavorable

FIGURE 6: BUSINESS RISK MANAGEMENT INTERACTIONS

10 10.0 2+5.7 200 «
47.1 109 *1.4 190°
9 10.4 150 °
J18.6 200
8 17.0
7] #.3 o6.0 40
<4
20O
<Z 67 14
SR °
==
N
He 4
& 14
37 2.9 3.0°

2 Overlays are combined
risk mitigation and risk
1 monitoring rating

0 T T T T T T T | |

1
0 1 2 3 4 5 6 7 8 9 10
favorable unfavorable

TECHNOLOGY DEVELOPMENT RATING

FIGURE 7: TECHNICAL RISK MANAGEMENT INTERACTIONS

21 M.. Deutsch

Hughes
21 of 38

CONCLUSION

The exploratory data analysis has suggested a heightened confidence in the
conceptual model and its causal relationships. The key hypotheses have not been
significantly contradicted with the exceptions noted. Several additional hypotheses
deriving from the exploratory analysis were noted and merit further further study.

The basic eventual contributions of this study after further development and
data collection are envisioned to be:

1. A general increased understanding of the dynamics and effects of project
management actions;

2. An aid to practicing project managers so that they may make key
management process decisions with a more visible and predictable impact
on project performance; and,

3. An instructional instrument to educate project managers by systematically
representing past experience in the form of lessons learned.

REFERENCES

1. D.P. Slevin and J. K. Pinto, "The Project Implementation Profile,” Project
Management Journal, September 1986, pp. 57-70.

2. J. K. Pinto and D. P. Slevin, "Critical Factors in Successful Project
Implementation,” /EEE Transactions on Engineering Management, vol. EM-34,
no. 1, February 1987, pp. 22-27.

3. R.L. Schuitz, D. P. Slevin, and J. K. Pinto, "Strategy and Tactics in a Process
Model of Project Implementation,” Interfaces, vol. 17, no. 3, May-June 1987, pp.
34-46.

4. J. K. Pinto and J. E. Prescott, "Variations in Critical Success Factors Over the
Stages in the Project Life Cycle,” Journal of Management, vol. 14, no. 1, pp. 5-18.

5. B. N. Baker, D. C. Murphy, and D. Fisher, "Factors Affecting Project Success," in
Project Management Handbook, eds. D. |. Cleland and W. R. King, (New York:
Van Nostrand Reinhold Co., 1983), pp. 669-685.

6. D.C. Murphy, B. N. Baker, and D. Fisher, "Determinants of Project Success,"
NASA NGR 22-03-028, NTIS N-74-30392, 1974.

7. W. Curtis, H. Krasner, and N. Iscoe, "A Field Study of the Software Design
Process for Large Systems,” Communications of the ACM, vol. 31, no. 11,
November 1988, pp. 1268-1287.

8. A.C.Boynton and R. W. Zmud, "An Assessment of Critical Success Factors,”
Sloan Management Review, Summer 1984, pp. 17-27.

22 M. Deutsch
Hughes
22 of 38

9.

10.

11.

12.

13.

B. W. Boehm, Software Engineering Economics, (Englewood Cliffs, NJ: Prentice-
Hall, Inc., 1981).

R. W. Jensen, "An Improved Macrolevel Software Development Resource
Estimation Model," Proceedings Fifth Annual IPSA Conference, St. Louis, MO,
April 26-28, 1983, pp. 88-92.

J. Vosburgh, B. Curtis, R. Wolverton, B. Albert, H. Malec, S. Hoben, and Y. Liu,
"Productivity Factors and Programming Environments," in Proceedings of the
Seventh International Conference on Software Engineering, Orlando, FL, March
1984, pp. 143-152.

B. W. Boehm, "A Spiral Model of Software Development and Enhancement,”
Computer, May 1988, pp. 61-72.

B. W. Boehm and R. Ross, "Theory-W Software Project Management Principles
and Examples," IEEE Transactions on Software Engineering, vol. 15, no. 7, July
1989, pp. 902-916.

23 M. Deutsch

Hughes
23 of 38

e o,

[

dasli

-

-

VIEWGRAPH MATERIALS
FOR THE
M. DEUTSCH PRESENTATION

5794

[

! me | ' (1N it

l

asuajaq Jo Juawpedaq 's'n ay) Aq paiosuods
A1NLILSNI ONIHIINIDNI IHVYMLI0S

olel[l}y Juapisay
pue

ANVdAWOD 14VHOHIV STHDNH
ISpUaIdS JoIyn
Yasineq 's [eeydin

6861 ‘6¢ 1aqWIaAON
puejliely ‘ljoquaaln

dOHSHHOM ONIHI3INIONT JHYMLI0S TVNNNVY VSVYN

SisA[euy Adojeaodxyy uy :SS930.4J
JuduIdISEURIA] J99[04J 2a8M)JOS 1))
WO.1J SS33INS 3393[0.1J SUndIpPaL]

VSVN

M. Deutsch
Hughes

24 of 38

uoneoanps o

Buipue}siapun [elaudy) o
--uoneflisaaul Aujiqisead .

SS929NS-UOU pue SS32INS
usamlaq 9leulwLIdSIp Jey) s10joe} Ajjuapl :[eoy) «

ss990.1d Juswabeuew jo9loud alem)jos
uo ejep jeoriidwa juesijiubis jo Ayoned :uoneanop -

INMIIISU] SULIIUISUY 3.18M}JOS
1@ ApN)S $S999N§ 19301 edrndury

M. Deutsch
Hughes
25 of 38

¢1opoty SHINSVANW
_&ﬂc_u&.-mno HALLDIAANd
ue Se anjeAp
judwageuryy adejraju]
[onuo)/uraue]d
judwddeury ¥SIY

uoyruyo(adoog
angdorei(q
$90aN0SYY
[ouuosIdg

SIUIBIISUO)) [EIUYII,

SJUTBI)SUO)) SSIUISNY
saoRjIU]

J9jo8IRY))
9ZIS

199foxg

ANSI2APY

SHINSVAN
INHAANAdAd

JUIWIAIIYIY
sjuamaambay

OURWAOLIDJ
[eoruyoa],

uonoesyes I9sM)

gouamqum,,
19N

I[npayog
DUBULIOJID
ssoursng

1500

BB ssaoong 30904 Jo [PPOA [ednayjodLH

M. Deutsch
Hughes

26 of 38

Juouageurw $201N0SI
doepIul [eo1uyo3}
BUID sk
[euralxy /1ed1SAUd vonmuyep |
 —— adoos
[01U0d [EOIGOSL
pue 9 : d $20IN0S3l
uooha_ ww_ ; [PUUOSId]
an3ojeIp

BT [9POJA $S990. Jududgeuey

J010RIJUOD/ISW0ISNO/I9S)

Suruueyd pue
juouIaeuBW
ySu 0139en11S

M. Deutsch
Hughes
27 of 38

M. Deutsch
Hughes

10191] INSOIDI(T A0IIDAIUO) [LIULOISN)/ 4IS ()
BN suopesspisuo)) poqeld(sduexy

28 of 38

A oo wonne w (12 [T WL - . LTI g [TV 3 [T] . e . () t . " ¥ "I w o Wi -

j Bujuueid oibajeng
+
@ JoJjuod pue Bujuued josloig
$S921n0S31 [edIsA m 23
UV ‘\\\N-ﬂ‘v\- :m M.mlm
R

0 SJUIEJISUOD [BOIUYD8 |

‘\\\\‘q '

Juswabeuew peau Jasn aydninw

(+) jﬂjwoz_%om UONEIIoUoOaY
Aisianpe BUloIX
r— ApE /] | 3

--———— Juswiuabeuew aoeLId)ul [RUII)IX
@ ! HOIIIBUIBT _ sopinor wbw 4

(+)
\\\\\\lﬂﬂ Buuoynuow ysiy

5 luswabeuewl Ysi [eajuyI9 | <—T) Juswdojaasp ABojouyoo |
v—) uonebiiw ysiy
-— [SIuIeAIsuOD ssauisng
Juawabeuew S| SSaUISNG

|

@) anbojeip J0}0R1JU0D ‘18WO0ISND “19S()

N
N

~
~
~
N
N
N
n
N
N
N
N
N
n
.

N
)
5
-
“
s
.

,

A
S
N
\

LS PLS LI ESEES LSS

(+)

@) uomuyep adoos [eoluyoa |

(+)

uonezpuoud sjuswalinbay

sdigsuoney jesne))

I ' tonr

i
sy

S

M. Deutsch

Hughes
30 of 38

HONVINIOJIIdd SSANISNE

6 8 L 9 S v ¢ 4
l] I l _ 1 | I

199{01d [nyssaoonsun o
199foxd [nyssaoons »

"NOILdADYAd SINTANOLSTY

O

FONVWIOLad
¢ TVOINHOAL

VSVN

diysuoneroy
URBULIOJIDJ
ssauIsng
pue
[edIUyII .

M. Deutsch
Hughes
31 of 38

VSVN

9[quIoAey HONA'INGANL LN 9]qeIOARJUN 9[qeIoAe] HONF'INGANL LAN 9[qeloAgjun
oL 09 0¢ ov 0t 0c 01 0 0L 09 oS oy 0t 0c 01 0 3
L | 1 | | | | 0 L | | { | 1 | 0 3
——rl E
p
1 —1
-7 —C
o —€ o —€
oG oQ
~C W m ~G m M
O @)
. Z o o ZE
R e! -9 8
B N\ . L4 o .IN\
g —8
_I.@ . L I@
. [TPy 1) . . |O~ . L loﬂ

UINQ.IN], JON SA NDUBULIOLII]

32 of 38

Hughes

VSVN

M. Deutsch
Hughes

82°0- G50 [2°0- 8v'0- SJUIBJISUOD [BOJUYDD |
L0 L0°0 ve'0- 90°0- J810BIBYD PUE 8ZS 10301
WA £L°0 170 69°0 |oJjuoo pue Buluueld josfoid
290 ¥€'0 v0 G20 $80.n0sal [ealsAyd
280 080 89°0 ¥9°0 $82JN0Sal jpUuU0slIad
S40) 2v0 200 0€°0 Buuueid oibsiens
0 960 610 80 anbojeip 10}0BU0D/1I8WOISND/I8SN
60 00 09'0 65°0 Juswebeuew pasu Josn s|diiny
2L0 150 290 050 awabeuew aoepsiul [BUISIXT
280 85°0 0,0 850 Juswabeuew ysu sseuisng
650 G9°0 G20 €40 Juswabeuew ysi [eoluyoa |
LL0 99°0 £9°0 99°0 aous|nqiny JoN
soueuuoued souewuouad eouewiopsd eouewiousd
ssauisng [eoiuyos | ssauisng jeoiuyos |
syo9loid Ajisianpe ybiH syoefoud |1

DUBULIOLIJ 2 SI[qeLIBA 3jIsodwio)

33 of 38

6£0

6£0

{440

Wwo

8v'0

(490

(4%

¥$0

860

90

90

€L0

SIUQWISLI/swANSAS Suroerout
Iay1o jo s1atiddns yim uosrery Suto8-uQ «

siuswannbar 1921100 JINSSE 0] §198IUOD
I010BUOI/IFWOISNI/ISN IALIRIOQR[[O]) o

SMIIAQI USISIP [BULIO)
up uonedionred (S)19s() «
suefd reIUAWIIOUL UL PAJO[JI
sjuawannbal [estuysd) Jo Supjuer paznuouy .

M31A1 udisap Areururard 210J0q payIpowr
$Q0RLIANUL [RUIANXI Aluanbaly MOH »

pIeoq jonuod Sueyd oyt
UO UONBIUISAIdAI J010BRUOD Pue (S)IIS() «

spaau sxasn 9idnnw
JO UQTIBI[IOUOIAIAUANTITRURIA] »

MITADI u1sap Areururjard 101je poypow
$I0BJIAUIL [RUINX3 ApUanbay MOH

suoneorjdde 2¢ sourdrostp euonouny
pannbai ur paousuadxa ouuosI9 g «

uonisuen pue Sunsa ySnoxy
103(01d uo surewa 18y WIBD) JO [IAI] [IIS «

passasse A[eorporrad uonopdwos
199(01d 10} sAIBWMSI S[NPIYIS/ISOY) «

wed) douBUIUTEW [eniul Y] JO
astuadxs uonesydde pue Suusonduy «

aouvwsofiad
ssauisng

€S0,

€50

€S0

LSO

LSO

850

850

090

290

990

eL0

LLO

payads are sjuswannbal
doeyIUl UeWNY-13ndwod [[om MO «

PamatAal A[esrpourad pue
pareaut|ap s1ajowrered S JO 19G «

12wdo[9Ap [BIS-[[NJ 9I0J3q I[IKD-3JI|
Ul POPNOUL SIINSBIW UOTIONPAI YSTY o

aes pauued e 03 paredwos
A1reorporrad juswysipduwosoe [edtuyos) [emoy «

SIUUAINDAI 1921100 9InSSE 01 SIOBIU0D
I010B0UOI/ISWOISNI/IISN JANBIOGR[[OD)

payroads are
sluawaInbar reuonouny [[9mM MO «

uonisuen pue Junsal ySnonp
103(01d UO SurBWISI 1B UWIRA) JO [IAJ] [[INS *

passasse Aqreorpouad uonodwos
193(01d J0J SIBWNSI I[NPIYIS/ISO))

spaou s1asn aydninuw
JO UONIBI[IOU0DI/1UdWATRURIA] o

uonOUNJ UONIULJIP
[eoruyoa1 199foxd [enua) «

wIea} 92UBUUIBW [RNIUT 9y} JO
asnradxo voneordde pue SunouiSug »

pay1oads sjuswannba
uoddns/jouuosiad feuonerado [om mof] .

aouvwiofiad
oruyda g

s192lo4J 11V

SUoIje.RPISU0)) juduseuey do g

VSVN

M. Deutsch
Hughes
34 of 38

VSVN

_ payads are passasse A[peotpoured uonojduiod
260 SOUSLIAORIRYD 3duRULIONd [[am MOH » 850 100fo1d 10J SAIBWNSA ANPIYSASQ)) »
paywads are Sunsa wsAs -
6S°0 SOLIRUDS [euoneIado [Jom MOY « 19'0 Ul pPopN[OUL SOLIBUDS [euone1ado Jas() « S
ae1 pauuerd e 01 paredwod maraar ugrsop Areuruirard 1aiye paytpow : ®
190 Ajreorpourad juawnysiiduiodsoe [ea1uyo9) [eNIdY $9°0 sa0RLIaUl [BWIAXA Apuanbaxy moy . =T
Sunsa woaisAs pauoads are
990 U1 papnjout soLreuaos feuonesddo 195 « $9°0 sjuowaninbal reuonouny [[om MOH
Wwed) SouBUIUTEW [RRIUL R JO uonodunJ UONIUYIP
99°0 astradxs uoneosridde pue Suudouduy « 99°0 [eo1uYy231 100f01d renua) o
uonisuen pue Sunsay ySnonp uonisuen pue Sunsdy ysnonp
99°0 199[01d uo surewar 18y} WIBI) JO [SAI] (IS * 89°0 199lo1d uo surewas ey U JO [IAI] [[INS o
suonestidde 7 saurdiostp revonoung i WIe9) 0UrUUIBW [BRIUl Y} JO
oL0 pannbar ur paouspradxs [SUUOSIY « oL 0 astradxa uoneordde pue SuuasuiBuy «
pamataal Afrestpouad pue spadu s1osn 9dpnuw
1.0 paresuyjop siaourered YsU JO 319G o 1.0 JO UOLIBI[IOUOIRIAUIMITRURIA]
parjioads are syjuswannbar sjuauIannbal 1901109 AINSSE 0) §198IU0D
€L0 uoneoyiyenb woIsAs [fom MO « L0 JOIOBNUOD/IFWOISNI/IISN JATBIOQRI[O)) o
sue[d [eIUSWAIOUT UT PAOIYAL suonesydde 2 saurdiostp [euonouny
SL0 syuawannbar [eotuys9) Jo Surjuel poaznuoL » €L0 pannbax ur pasusuIadxa [SUUOSIV »
pagads syuswannbax pamataar Ajresrporrad pue
9.0 noddns/jouuosiad euonerado [[am MoH o 8L0 pareaurjap siaowrered YSU JO 198 o
passasse A[eorpouad uonodwod payoads sjuswannbar
$3°0 109f01d J0J SEUISI INPIYIS/ISOD) 6L0 uoddns/jouuossad reuonerado [om MO «
aouvuLioftod auvuLiofiad
ssauisng [oo1uy2a g

$192[044 118424pY Y31
SUOIJRIIPISUO)) Judunseury dof,

35 of 38

_ VSYN

ONILVY LNIVYLSNOD SSANISNg

J[qeioARjUN a|quioaej .m
1] 6 8 L 9 c 14 € (4 I 0 F
[] 1 I]] |]] | 0 m
J1039eJ uontuiyap adoos — 1
[eo1Uy99) 1k SARIIAQ)
—C
8€o)
§Co —¢
Te°
—¥
HONVINIOIIdd
Rl 5100+
v1° 9
¥ IUBULIOJII]
0€o pLe cpo 9
. LAJULRERT
cpo 8¥, i
* LSe
o o o9 . —6 ﬁ:&
o o,

gs* Neumﬂw 6 gg Ol mﬁ=m& hﬂ@:g U
ssouIsng

Hughes

36 of-38

VSVN

ONILVY INFNdOTAAHd ADOTONHOAL

ajqeIoARJUN 9[qrIOAR)

o_~ m m w 9 S 14 t [4 I 0

£
m 4
I 1 ! | I | 0 H e
[}
SZh
Bunyes Buuojuow ysu
pue juswabeuew ysu | [
paulquod ale sAepanQ
—C
L 0 6T —€
a0
—
FONVINIOAYAd
—S TVOINHOAL
quc
. —~L
0O Q.Oo M,.Qo
oLl
—8
007 981"
. vot1, —6
JO61 144601 ret’
*007 L'S *e°0°01 Lot

UBULIOLIIJ [BITUYII], SA AS0[oUYII],

juswinJisul [euonaniisuj o
siabeuew weiboid 0} pie jeanoeid o
Buipue)siapun pasealdy| o
-- SUOIINQLIJUOD |[BNJUAAT »
(uwd) Buoj) suonesidde anjoadsold o

(wie) Jeau) spoyjow snoJobil alow
Buisn Apnj}s |euone}a1109 aAI}23ds0419Y o

-- $09]S IX9N -

sasayjodAy pue japow uj
9Juapjuo9 pauajybiay sapinoud Apnis Alojesojdx3 .

saIHONH Arewrung sjuioJ A9y]

VSVN

M. Deutsch

Hughes

38 of 38

.~

e

Al

A Software Environment: Some Surprising Empirical Results
Bruce 1. Blum

Johns Hopkins University/Applied Physics Laboratory
Laurel, MD 20707-6099
(301) 953-6235

A CONTEXT FOR THE ANALYSIS

A recent model of the software process describes it as a transformation from
some need in the application domain to an automated product that responds to that
need.! As shown in Figure 1, the process can be further decomposed into:

(T1) A transformation from the perceived need into a conceptual model (which
uses application domain formalisms) that describes the problem and the automated
solution.

(T2) A transformation from the conceptual model’s view of the proposed solution
into a formal specification that defines the behavior and performance of the
software product.

(T3) A transformation from the formal model into an implementation.

In the traditional waterfall flow, the first two transformations are called requirements
analysis and the third encompasses the software development activities.

APPLICATION | CONCEPTUAL MODELS

>
DOMAIN
FORMAL MODELS IMPLEMENTATION
>
DOMAIN
Figure 1. The essential software process.

B.I. Blum
APL

1of 19

D

LR

Both T1 and T2 rely on knowledge of the application domain; they depend on the
experience and judgment of the analysts. Validation increases confidence that the
right system is being specified, but there is no concept of correctness. T3, however,
begins with a formal specification, and there are objective criteria to determine if the
product is correct with respect to its specification. Product behaviors not prescribed
by the specification must be validated.

Most software problems (and associated costs) can be traced to failures in the
requirements analysis phase. In terms of the software process model just presented,
such failures result when the conceptual model is invalid or when the formal model is
an inaccurate representation of the conceptual model. This view is reflected in
Brooks’ statement,

[believe the hard part of building software to be the specification, design,
and testing of this conceptual construct, not the labor of representing it
and testing the fidelity of the representation.?

(The italics are Brooks’.)

Of course, by historical necessity computer science first addressed the challenges
of establishing effective representations and determining their correctness. With this
orientation, the conceptual model was restricted by the technology’s ability to realize
implemented solutions; freedom to adapt the conceptual model was constrained by the
effort to produce an implementation. Yet, today it is possible, for some well-
understood domains, to bypass the problems of representation and focus only on the
process of conceptual modeling (T1). This note examines how the software process
behaves in such a setting.

An environment that concentrates on conceptual modeling has been used in a
production setting for a decade.® In this environment:

The notations used for the conceptual and formal models are isomorphic. Thus,
T2 is eliminated.

Behavior-preserving methods are used to transform the formal model into an
implementation automatically. Consequently, T3 is eliminated.

The software process thus reduces to the implementation of prototypes that are
defined, tested, and ultimately put into operational use where they continue to evolve.
In Brooks’ terms, the developers work only with the "conceptual construct” from
which the implementation representation can be generated.

Project data from this environment provide insight into the essence of the
software process when the labor of implementation is removed. As will be
demonstrated in the following section, some of the results are surprising.

DATA ANALYSIS

The environment under review has been used to implement clinical information
systems, itself, an AI database interface, and some smaller applications. The largest
product, the Oncology Clinical Information System (OCIS), consists of over 6,000

2
B.I. Blum

APL
20f 19

-

programs and manages a database modeled with 1,700 relations; it is considered one of
the most advanced systems to support tertiary care* Two other hospital-based
information systems have been implemented; one has been retired, and the second
remains in operational use. The intelligent database interface tool is in beta test but
is not used operationally. Data from these applications substantiate the following

observations.

Product growth. Each product is viewed as a collection of tools by its user
community. Consequently, when the system is found to be effective, new tasks are
identified, and the product grows. The limits to growth are the willingness of the
organization to assimilate new features, the ability of the development group to
identify and implement new features, and the limits of the computational resources on
which the application operates. In the case of OCIS, there is continuing growth that
levels off as the equipment resources are saturated. (See Table 1) Each new
increment of computer resources is followed by an increase in system size and the
number of functions supported. Growth also can be restrained. After a decision was
made to replace the 750 program Core Record System, it grew by only 5% in a three
year period; changes were restricted to externally-mandated modifications. In all
systems studied, growth in the number of programs and number of tables (relations) in
the data model is proportiondl. The number of new attributes in the data model
grows more slowly because most new tables augment concepts associated with existing

attributes.

Year System size

measured | programs Tables Elements
1982 2,177 456 1,251
1983 3,662 848 2,025
1984 5,024 1,045 2,398
1986 55411 1,375 2,613
1988 6,6052 1,635 2,924

1 Includes 399 programs not in production use.
2 Includes 32 programs not in production use.

Table 1 Growth of OCIS at five points in its operational life.

System stability. Tables 2 and 3 illustrate the modification history of the OCIS
table and program definitions. Each table presents a matrix of year initially defined
by year last modified. The total column counts the number of objects defined in a
year; the total row counts the number of objects last modified in that year, i.e., the
object was not modified after that year. The 1988 data represent only the first 6
months of that year. The data in these tables are analyzed in the following two
paragraphs.

Although the number of programs and tables grow at about the same rate, the
definitions of the tables are more stable than those of the programs. For example,
after OCIS had been in operational use for over 5 years, a review found that 31% of

3
B.I. Blum

APL
3of 19

4

the programs and 32% of the tables were new in the sense that they had been defined
in the last 2.5 years. Yet, an ecxamination of changes to the previously-defined
objects showed that 34% of the programs and only 7% of the table definitions were
edited during that two-and-a-half-year period. (Reasons for the relative volatility of
programs are discussed in Reference 5.)

Year Year table last updated
defined | 1930 1981 1982 1983 1984 1985 | 1986 1987 1988 | Total
1980 2 4 1 1 4 2 I 1 16
1981 95 3 23 5 7 1 10 3 185
1982 159 34 7 3 8 10 8 229
1983 176 19 20 13 14 1 243
1984 193 9 13 14 7 236
1985 168 15 21 5 209
1986 183 16 15 214
1987 200 20 220
1988 82 82
Totals 2 99 191 234 228 209 244 285 142 1634
Table 2 OCIS table modifications by date defined and last change.
Year Year program last updated
defined | 1981 1982 1983 1984 | 1985 1986 1987 1988 Total
| ———————— —
1980 3 5 2 5 5 2 22
1981 91 74 27 34 24 65 a0 81 486
1382 335 172 52 63 151 176 199 1148
1983 252 155 102 1111 162 92 874
1984 514 106 164 306 169 1259
1985 234 173 169 199 775
1986 432 306 219 957
1987 499 272 771
1988 7 313 313
Totals 94 414 453 760 529 1101 1708 | 1546 | 6605

Table 3 OCIS program modifications by date defined and last change.

Impact of change. In a highly integrated system one would expect changes to ripple
through the system. This has been demonstrated with a small conference management
example.® In the case of OCIS, 1,084 programs were added to the system over an 18-
month period to bring its size to 6,605 programs. During this process, 2,170
previously-defined programs were edited. In other words, to increase the size of the
system by 20%, some 40% of the existing programs had to be modified. While the
magnitude of this change may suggest a poor design, it should be noted that the
system is used to support decision making in life-threatening situations and is

B.1. Blum
APL
4 of 19

-

perceived to be free of errors. These modifications were made by a staff of 4.5 full
time equivalents; many persons edited objects that they did not design.

Edits as a measure of understanding. If the software process relies on iterative
problem solving, then it must involve testing potential solutions and replacing existing
solutions as the problem is better understood. In this context, edits can be
considered a measure of the analysts’ ability to translate an idea into a valid object
in the conceptual model and then evolve that object as experience accumulates.
Several studies have shown that for small applications of under 100 programs an
average of only 2-3 edits is required before a program is accepted as valid.
(Naturally, with iterative development the needs will change, and additional edits will
be required for evolution.) An 8-year edit history analysis of the 6,000 OCIS
programs showed that the median number of edits for a program was 10. These edits
include changes for debugging, pre-operational testing and post-operational evolution.
Only 10% of the programs had been edited more than 33 times. The generation data
are presented in Table 4; it is assumed that the number of edits is one less than the
number of generations (compilations). Notice how stable the data are over the three
periods sampled.

Number of program generations
il
Percentile 1984 study | 1986 study | 1988 study
10 3 3 3
20 5 5 5
30 7 7 7
40 9 9 8
50 11 11 11
60 14 14 14
70 17 17 18
80 22 23 23
90 31 31 34
99 67 82 108
Program
count 4,919 5,541 6,605

Table 4 OCIS program generations for three studies.

Individual differences. There is a large body of literaturec suggesting that individual
dif ferences vary by as much as an order of magnitude. Although there are obvious
differences among the individuals assigned to the projects examined, the range for
each measure of individual performance was within 50% of the group mean. This
relationship was not valid during the training period, which sometimes extended two
or more years. Experience with these projects suggests that most individual
differences are a training artifact rather that an inherent characteristic of the
workforce. Moreover, individual effectiveness in this environment seems to correlate
best with domain understanding.

B.I. Blum
APL
5o0f19

oo b

[)

Year defined
Designer
1980 1981 1982 1983 1984 1985 1986 1987 1988
‘B1 5 176 182 7
B2 46 15
B3 33
B4 92 15
B5 3 50 232 105 41
B6 32 84
B7 13 32
(0} | 19 24 40 47 1
02 208 252 224 162 232 184 33
03 1 2 20 25 42 13 14 30 3
04 13 214 304 406 207 362 256 81
05 24 63 71 307 253 249 230 176
06 1 47 155
07 33 5 3
o8 139 95 67 14
Other 13 26 3 34 5 4 6
Man Yrs.| - 7.0 7.0 5.5 4.5 4.5 4.5 4.5 2.3
Table 5 OCIS programs by dedigner and date of definition.
Year defined
Designer
1980 1981 1982 1983 1984 1985 1986 1987 1988
B1 248 22.6 12.6 36 T
B2 154 99
B3 27.0
B4 27.5 25.2
Bb 13.0 27.7 19.0 17.5 15.8
B6 23.3 16.5
B7 216 17.9
01 13.7 15.6 104 16.6 14.0
02 23.7 16.3 15.2 13.2 10.7 9.5 9.2
03 8.0 17.5 13.3 11.7 12.5 10.7 5.6 3.2 43
04 33.0 18.9 12.8 15.5 20.7 10.7 7.8 8.4
05 34.2 18.9 14.0 17.1 159 154 17.2 13.6
06 16.0 216 18.0
07 12.6 27.2 12.0
08 12.3 9.5 5.9 7.8
Other 221 18.3 4.7 40.4 5.6 125 25.8

Table 6 Average OCIS program generations by designer and year of definition.

6

B.I. Blum

APL
6 of 19

o

Tables 5 and 6 report annual OCIS designer activity in terms of the number of
programs defined and the average number of times those programs were generated.
The data are recorded for programs that were part of the production system in 1988,
and there is no recording of the effort related to discarded programs. Designers from
the Department of Biomedical Engineering (B1-B7) were professional software
engineers, .and they left the project after the system was installed. Of the Oncology
Center staff, only O2 and O3 had formal training in software engineering or computer
science; O3 is responsible for system management and does very little application
programming. Both O4 and O35 were hired with no prior computer experience. Note
the relatively high program generation rates in the first year of training; after three
years on the job, however, it is difficult to identify which designers are the most
experienced. (The differences in the number of programs designed by O4 and OS5 in
1981-1983 relate to the fact that many of O4’s initial assignments could be
accomplished by copying and then editing a existing report or search program. Thus,
even with a simple table like this, some domain understanding is necessary for its
interpretation.)

Productivity measures. Because the environment employs a paradigm for software
development and evolution limited to conceptual modeling, it is impossible to compare
its productivity with paradigms that emphasize the detailing of the formal model to
produce an implementation (i.c., those that focus on T3). By way of a characterizing
metric, OCIS productivity over an 8-year period was .74 production programs per
effort day. (See Table 5; there are approximately 225 workdays in a year.) For the
prototype database interface application, the rate was 1.8 programs per effort day.
These numbers do not account for discarded or retired programs. The functionality of
a program is approximately the same as that of a 300-line COBOL program, but the
average program length is only 15 lines. Studies of programmers in other
environments suggests that a productivity rate of 15 lines per effort day is a
reasonable target, so a rate of a program a day for these compact specifications
should not be considered remarkable.

IMPLICATIONS

The data presented imply that the software process behaves quite differently
when it is restricted to conceptual modeling (T1) without regard for program
construction (T3). What has been described in this paper is the essence of building,
adapting and enhancing a software product to meet a set of human needs. Today, in
most application classes, we have not formalized our knowledge so that we can reuse
it automatically. Thus, most of the process is concerned with what is called here the
formal modeling. Because this is difficult (except where we have found ways to reuse
our experience), this type of modeling activity drives the process, and conceptual
modeling is restricted to expressions in the formal modeling representation scheme. 1
believe this distorts the software process and restricts our projects. As I have
attempted to show in this paper, once the limitations of T3 are mitigated, we can
recognize how dynamic and integrated our systems are. Moreover, we also can
observe how effective people are at solving problems when they have access to the
appropriate tools and feedback.

Of course, this does not mean that formal modeling is not important. The
conceptual model referenced in this paper is a formal model. Indeed, without

7
B.I. Blum

APL
7of 19

& I b fe——

AT ™)

[

confidence in its formality, we would be hesitant to use the programs generated from
its specifications. We label this model conceptual because it also offers a compact
and expressive means for the designer to state and evaluate his or her intended goals.
Naturally, the representations used by a conceptual model will be application-class
specific. That is, one might expect different formalisms for interactive information
systems, satellite control systems, and programming language compilers. Thus, the
demonstration of a conceptual formalism in one domain may have little bearing on the
utility of that formalism in some other domain. The important point, however, is that
where such conceptual formalisms can be constructed, they will allow us to focus our
effort on the problem we intend to solve rather than the implementation of its
solution.” That should lead to improved productivity, reductions in apparent individual
differences, the management of complexity levels otherwise considered dangerous, and
(one would hope) revisions to some of the software process assumptions that we
accumulated as a result of our concern for writing programs.

REFERENCES

1. B. I. Blum, Formalism and Prototyping in the Software Process, Information and
Decision Technologies, (in press).

2. F. P. Brooks, Jr., No Silver Bullet, Computer, (20,4):10-19, 1987, p. 11.
3. B. . Blum, TEDIUM and the Software Process, MIT Press, Cambridge, MA, 1989.

4, 1. P. Enterline, R. E. Lenhard and B. I. Blum (eds), 4 Clinical Information System
for Oncology, Springer-Verlag, New York, 1989.

5. B. I. Blum, Improving Software Maintenance by Learning from the Past: A Case
Study, Proceedings of the IEEE, 77:506-606, 1989.

6. B. I. Blum, Iterative Development of Information Systems: A Case Study,
Software-Practice & Experience 6:503-515, 1986.

7. B. I. Blum, Volume, Distance and Productivity, Journal of Systems and So/ftware,
10:217-226, 1989.

ACKNOWLEDGMENT

This work was supported in part by the U. S. Navy, Space and Naval Warfare
Systems Command (SPAWAR) under contract N00039-89-C-5301, task VMAR?7 with the
Office of Naval Research (ONR), and by the Air Force Office of Scientific Research
(AFOSR) under grant AFOSR-89-0080.

B.l. Blum
APL
8of 19

I

EL LT

- -

VIEWGRAPH MATERIALS
FOR THE
B. . BLUM PRESENTATION

5794

>

-

I

111

W

TiF

:S}INsaJ ay |

‘lopow }ey} wold} uoljejusws|dwl ay] ajelsusr)
‘uollejuasaldal |[gpow |en}dadouod e spinoId

‘Poyiaw sy |
¢ ANAIOe Bulwwelbold sy] sjeulwie am

JI 9ABYS(q $S800.4d 2iem}jos ayl Saop MOH
:uolysanb ay|

Aiojeloqe] soisAyd palddy ‘wnig | 8onig

S}|nsayYy _mo_h_aEm buisluding swog
JUSWIUOJIAUT 2JeM}jog VY

B.I. Blum
APL

9 of 19

ssald LIN ‘Sseooid a/emljos oyl pue WNig3l ‘wnig

sjoaloid [eloadg
mmcm:o 1Se| pue }sii} JO pJOoOal juduew.lad
(usym ‘oym) suoijeisausb pue sabueyd ||y

‘ejep ayl

s108loid uolnjelisuowap pue jjews

juelsissy |euollebineN juabijjalu]

WNIa3L

wal)sAg Abojoisayisauy

wal)sAg piooay 810D

WwalsAg co_#mEho,.c_ jeoiuljy AbojoouQ:
:g1098foud ayl

(-0861) swalsAs uoljewlojul aAnoeIdlul buidojansp
10} JUBWUOJIAUD Ue ‘ANId3L

B.l. Blum

10 of 19

L86} ‘9G-S "dd ‘@oueusiuiely a1em}jog uo “yuon

862 gcl 88/ 9861
G6¢ gel 1GZ 861
She 1l 06V 2861
sjuaws|3 | so|qe)| | sweiboig

v26°C GE9'L G09'9 8861
cly Goe 0591 9861 €19’ GLE'L L¥G'S 9861
9Ge 261 (340! 861 86E'C G0l ¥20'S ¥861
1414 g6 6vG ¢861 520°C 8t8 299'c £861
81 9 s¢ 1861 162’1 oGt LILV'T Z861
sjuaws|3 | so|qe] | sweiboid Siuawsa|3 sa|qe sweJbo.yg painseaw
9215 WaIsAg 1B9A

SI00

UIMOUL) 10npo.d

B.I. Blum
APL

11 of 19

o|qels ¢/1 ‘paupe g/1 ‘mau g/1 SIDO 8861

B.I. Blum
APL

12 of 19

saj|gel ||e J0 %/
swelboud ||e 0 %Py e

poliad swes ul pallpa s198[qo pIO

(suoije|al) saj|ge} ||e JO %cZE
sweabolid |je JO %€

(s1edh G°g 1se| 8y} ul pauiysp “o1)
SIDO 8861 8yl ul s}oalqo maN

asn JO sJieaA g Jalie SIDO
Ajjigels welsAg

‘986l 'GIG-£0G:9 ‘9ousliedx] ¥ 991jorId - 81eM]JOS

E o
@
o
M < -

€8y | 29 [2€ [2¢ | 8 | 1S | WL | ELL | 69 | O felof 0L L EL | L | O | OL | #L 8L | 9 jeloL

€2 6 4 A 3 € l S isnbny G 4 L 1 L 1snBny

8c t-ARINY g Ainp 14 v Ainp

6€ GL | GL |1 4 9 eunp 14 1 € eunp

9%l | ¢ r4 Ie | s 22z |1 |2t ia few 61 rA oL 9 Aen

€L et |2t (1 6 14 Gl Judy 6l 9 8 g judy

17 €| 8 6 /oL | ¢S 61 yorew €L g 4 yorew

19 l gc | 8 8 Areniqey oL i 8 L Keniqa4

65 9L (& |9 Arenuer 2 oL | Gl Arenuep

rewoL | 6 8 l 9 S 4 € r4 1 rewL ! 6 8 l 9 S £ Z

dnosb wesboid dnosB weiboiy

WwalsAs aoualajuod aldwis
abueyn jJo 1oeduw

| . - [-’ = A LTIy 0

‘686l 'G09-96G:L. 'FIFT/ 8y}l jo sbuipss0id

'S101.18
Ou Jo uondaoiad e s314 ¢+ AQ 1048 ||V

swelboid gOg9‘g :auljoseq MaN
swe.lboud auleseq /L' polelausbay
auljeseq sy} o} swelboid $¥80°‘F PapPPY

polad yjuow g ue ul |00
(penuiluo)) abueyd jo joedw)

B.I. Blum

APL
14 of 19

‘9861 '112-192:9 ‘04eM]JOS puB SWoISAS T

509'9 LbS'S 616 | wesbosg
801 z8 19 66
vE L 1€ 06
£2 £2 zz 08
8l L1 L1 oL
vl pl vl 09
1 L 1 08
8 6 6 ov
L L L o€
g g g 0z
£ £ £ oL
Apms gg6L | Apris og61 [Apmis ve6L| | o

suonesausb weiboid yo sequinpy

S}Pa JO J9qunu UBIpaW pue Ues

sabuey) ay} Buipueisispun

B.I. Blum
APL

15 of 19

‘6861 ‘S$S800.d 81eM}jOs 8y} pue NNIJ1L

€¢ S'v 118 4 Sy S’y §'G 0L 0L - "SI\ Uep
9 4 S ve € 9c £l BYo
vi L9 S6 6EL 80
€ S €€ L0
g6t Ly l 90
9Ll 0€e 6vc €6¢ LOE iz £9 ve S0
18 98¢ c9t Loe g0V oeE vic €l 0
€ 0t 14 £l (A4 14 0oc 4 l £0
€€ 121 [A XA 9l vee AT 80C 0
L Ly oy 174 61 10
[4 > £l L8
v8 (A od
87 SOl [A XA 0S £ S8
1 6 125}
£e €4
St 9 cd
L 8l 9Ll g 18

8861 (861 9861 G861 v861 £861 861 1861 0861
Jeubisag
pauljap Jea

leaA pue Jaubisep Aq sweiboid SID0
| S8ouaJisilid [enplAipuj

LobrEn

B.I. Blum
APL

16 of 19

| T

‘686l ‘SS900.d4 81EM]JOS BY} PUB WNIdTFL

8'sZ G'cl 99 vov L'y €8l L'¢e Byl
8L 6'S 9’6 £C1 80
o [AV X4 9°cl L0
0’8l 9'Le 09l 90
act <Ll v'st 6'Gl (A} ovi 68l e S0
V'8 8L L0t Loz GGl gt 68l 0'ee 144}
0 4 A 9'G L0l gcl Ll £el Sl o8 £0
26 S'6 L0l €l 2’6l €6l L'EC <0
ovl 991 voL 9’61 L'EL L0
6L 9'Le L8
G591 £ee 94
8'Gl SLL 0’6l L'Le o€l s
A T4 XA 142
0'Le £q
66 v'sSl cd
9€ 9cl 9'¢ce B'vC %:)

8861 L861 9861 G861 v861 £861 861 1861 0861
1aubisaqg

paulap reap

leaA pue Juaubisap Aq suoneissusab gIHO

| S90ULJBKIQ [enplIAIpU|

B.I. Blum
APL

17 of 19

686} ‘922- 120 ‘9IBM}JOS puB SWSISAS T
‘Aep 1404)0 Jod sweiboid g’}

;(syjuow gi) Ayanonpoid yNI
‘Aep 140418 Jad sweuboud uononpold ¥/’

(sdeak g) Apanonpoud SI00
‘Aep Jad auo

J0 8jed ay} Je swelboid aonpoid pjnoys am usyjl

‘saul] G| sabeiane yjbua| uoneoyyioads welboad pue
‘Inoy/saul| g sabesane A}iAljonpoud pue
‘sebenbue| 18A0 sjgelieAul S| }110}ja-j0-1un/D01 H

Btm_:cma JO 9Nnssl uy
~saJinses|\ A}IAIONPOId

B.I. Blum

APL
18 of 19

"S90UBIS}}IP |enpiAlpul SS0UB ay)
9WO0249A0 pue A)MAnonpoud ybiy 03 pes| ued
SBAI109[q0 |BN1daduod 8y} JO MBIA BAI}09})D
pue 1oedwod e sjjoddns jey} JUSWUOIIAUS Uy

‘swelbold Buowe syui
dosp aJe alay] ‘ubisep walsAs pajeibajul ue uj

‘9|gels
S| [opow e}ep 8y} ‘sassao0lid 8y} 0] aAlje|oY

"SJUIRJIISUOD |eIdljlie 8y} aAowWal PInoys ap\
0]9 ‘JuswuoldiAug ‘Buipue]sispun ‘S82ino0sal
‘uoissiw Aq paurea}suod si Yyimoub walsAg

SUOIJeAI9SJQO PUB SUOISN|OU0)

B.I. Blum
APL

19 of 19

w1 mir————-r

"1

LI T

e

Measurement Based Improvement of
Maintenance in the SEL

H. Dieter Rombach
Bradford T. Ulery

Computer Science Department
University of Maryland

Jon Valett
NASA/GSFC

14th Annual Software Engineering Workshop
NASA/GSFC, Greenbelt, MD
November 29, 1989

1. INTRODUCTION

The SEL was created in 1977 for the purpose of investigating the effectiveness of various software
engineering technologies. A large number of case studies and controlled experiments have been conducted
in the past that have resulted in evolutionary changes to NASA’s software development practices [e.g.,
Basili85,McGarry85]. In this study, we have extended the traditional scope of the SEL to include
software maintenance in order to gain a more complete understanding of the software lifecycle. This
study began in early 1988.

This report describes some initial results of this study. The first part of the report describes the
design of the study, including the goals, some background about the environment in which we are work-
ing, the improvement approach, and measurement procedures. The second part reports some of our
empirical observations.

2. MAINTENANCE STUDY DESIGN

2.1. Goals of Study

The quality of the delivered product influences both what changes will be performed and the
amount of effort that will be required. We therefore characterize the products with the following objec-
tives in mind: to understand how and why the product changes; to understand how the product influences
productivity during a change; and to provide historical, baseline data for future projects.

We characterize the maintenance process to understand how maintainers spend their time and what
they do. We study the entire software life—cycle to understand how the maintenance process compares to
development; to understand how specification developers, software developers, users, and maintainers
communicate; why changes are made; and whether the organizational divisions result in the best use of
personnel’s skills and knowledge.

H.D. Rombach
Univ. of MD
1 of 21

AP

I

Maintenance is compared to development in order to
(1) understand the extent to which lessons learned during development can be applied to maintenance;

(2) evaluate hypotheses concerning the information loss arising from transferring a system across organ-
izational units;

(3) evaluate the quality of the system as measured by its actual use and history of changes once
development is complete. '

In order to make improvements, the findings must be packaged for use by future projects. Descrip-
tive models and baselines permit a project leader to assess a project’s progress relative to past projects.
Guidelines need not represent significant advances, but can serve to make projects more consistent and
predictable.

2.2. Background

The focus of this study is the early maintenance phase which begins upon acceptance of the
developed system and lasts until launch. During this phase, users train for launch operations and exercise
the system on test scenarios.

The organizational unit responsible for maintenance consists primarily of the engineers and scien-
tists who write the functional specifications for the software. These same people are also responsible for
training postlaunch operations personnel in the use of the system. Each change, whether it is a small
correction or a major functional enhancement to the system, is performed by a single person. The tech-
nology employed depends on the individual, but many of the familiar techniques from development are
absent (e.g., formal PDL, code reading, unit test drivers).

To date, we have monitored six projects including each of the three major types of systems
developed in the SEL environment:

(1) Attitude Ground Support Systems (AGSS) provide operational support for a mission. Their func-
tions include determining spacecraft attitude from telemetry data, verifying the on-board
computer’s attitude determination and control, supporting star tracking (for guidance), and more.

(2) Attitude Telemetry Data Simulator Systems produce realistic attitude telemetry and engineering
data files to exercise the algorithms and processing capabilities of AGSS’s. Telemetry data includes
essentially everything the spacecraft knows and could report back.

(3) Attitude Dynamics Simulator Systems are analytic tools for testing and evaluating (two subsystems
of) the spacecraft simulators. They simulate the environment of the spacecraft, sensor data, the
on-board computer’s response (actuator commands), and the resulting control torques in order to
model the spacecraft dynamics.

All of the systems studied so far are written in FORTRAN (the first Ada systems are just now
approaching maintenance). The systems we have studied range from 37K to 235K lines of source code
(including comments and blank lines) and require from 3 to 28 staff-years to develop. The AGSS’s are
the larger systems, the simulators the smaller ones.

During maintenance, each change is formally defined by an Operational Software Modification
Report (OSMR), a form that specifies the change, and then follows it, gathering dates and signatures as
the change is approved, implemented, tested, installed, etc. Typically there are more outstanding OSMRs
than resources. A Project Task Leader is responsible for allocating these resources. .

OSMRs may be filed for several reasons. Acceptance testing may reveal the need for enhancements
(corrections are still the responsibility of the software developers). Later, the users may request

H.D. Rombach
Univ. of MD
2 of 21

L]

enhancements or identify the need for corrections or adaptations. The specification developers may also
initiate changes, resulting from ideas about similar forthcoming systems. Or, the project office may
modify the project requirements.

2.3. Maintenance Improvement Approach

The procedures of this study were based on the improvement paradigm (chart 4)
[Basili88,Rombach88]. This paradigm suggests that maintenance can be improved by iterating the fol-
lowing steps for each project: (1) characterize the corporate maintenance environment; (2) state improve-
ment goals in quantitative terms; (3) plan the appropriate maintenance and measurement procedures for
the project at hand; (4) perform maintenance, measure, analyze and provide feedback; and (5) perform
post mortem analysis and provide recommendations for future projects.

We apply the principles of the paradigms strictly. However, during the initial phase, our under-
standing of the environment, goals, and measurement procedures did not develop according to the logical
ordering of the steps of the improvement paradigm [Rombach89,Rombach87]. Nor were all supporting
metrics identified by a strictly top~down application of the GQM paradigm. There are two good reasons
for not following these steps: (i) we sometimes discover that our knowledge of prior steps is inadequate,
so we retrace our steps, or (ii) practical comstraints (such as existing data collection forms) preclude a
strictly top—down derivation of procedures.

Measurement procedures were validated by actually applying them to real projects on a trial basis.
This trial period was an important first step in establishing the measurement program for maintenance.
It gave us the opportunity to understand the environment, and demonstrate the feasibility of the planned
measurement procedures.

2.4. Data Collection and Validation Procedures

We routinely monitor the effort associated with various maintenance activities, and other charac-
teristics of the changes. Similar data is available from development. This data is used to characterize the
maintenance process, the types of changes made to the product, and the reasons for making the changes
[Basilig4).

Routine data collection is implemented primarily through the use of forms (chart 5). At the end of
each week, project personnel each complete a Weekly Maintenance Effort Form (chart 6) which briefly
summarizes how they spent their time according to type of changes (correction, enhancement, adaptation,
or other) and maintenance activity (isolation, implementation, unit test, integration test, other). Upon
completion of each change, a Maintenance Change Report Form (chart 7) is filed. This form summarizes
the change from a user’s perspective (reason for change and functionality) and from the programmer’s
perspective (effort spent, parts of the system modified, etc.). A history of development (phase dates,
effort) and product characteristics (size, number of subsystems, etc.) is available from the SEL database.

3. INITIAL STUDY RESULTS

This initial study of software maintenance within the SEL environment has concentrated on three
major areas: 1) developing baselines of the software maintenance process, 2) comparing these baselines to
the corresponding development baselines within the SEL, and 3) beginning to understand the problems
encountered by maintenance personnel in order to provide feedback to the software developers. The fol-
lowing sections provide results and insights in each of these three areas. ')

H.D. Rombach
Univ. of MD
3of 21

o

3.1. Developing Maintenance Baselines

When attempting to measure and evaluate any software process, the SEL first attempts to establish
a baseline to characterize that process. Since data collection and experimentation on the maintenance
process are at an early stage in the improvement paradigm, this step is critical to the initial understand-
ing of the maintenance process. .

One way to characterize maintenance is to understand the types of maintenance requests that are
being made in this environment. Maintenance requests can be broken into three categories:

Adaptations — Changing the software to conform to a new environment feature. Such items as
changes due to new compilers or new operating systems fit into this category.

Enhancements - Changing the software to improve or increase its functionality.
Corrections - Changing the software to fix an error.

This data can be viewed from two perspectives, the number of changes completed and the amount of
effort to perform the changes (chart 8). Determining these baselines allows for a better overall under-
standing of the maintenance process. These numbers do not indicate any concept of quality, they only
provide a model for how this environment does its maintenance. Note that 14% of the effort during
maintenance is spent performing tasks which could not be attributed to any individual change. These
activities include attending meetings, management, configuration control, etc.

Interpreting this data is somewhat dangerous since its real goal is to simply define the types of
maintenance requests made in this environment, however, some simple conclusions can be drawn from
these baselines. Obviously, in terms of numbers the majority of maintenance changes made are error
corrections, however, an overwhelming majority of the effort is spent in making enhancements to the
software. This is not particularly surprising, since the enhancements might involve substantial changes to
the software. One point that the data supports is that in this environment many of the maintenance
requests concentrate on improving or upgrading the usability of the system. This is reflected in the
amount of effort spent in making enhancements to the software. Again, this data provides a baseline of
the types of maintenance requests and the effort spent in this environment. In the future this can be used
as a point of comparison for new maintenance efforts.

Another characterizing model is one for predicting the cost of software maintenance. An important
management tool would be the ability to determine the cost of any upcoming maintenance effort. Early
research into this area has provided no insight into the “best" way to predict maintenance effort. Chart
9 shows five different models for predicting maintenance cost. For each model the a range is shown of the
projects that were used in this analysis. For example, the effort per maintained million lines of code
varies from 1.5 to 24 staff years, while the effort per thousands of changed lines of code varies from 0.21
to 1.25 staff years. No apparent consistent method for predicting maintenance effort can be found at this
time. Given the wide disparity of the ranges, more data collection is necessary to find a strong correla-
tion between maintenance effort and development effort or system size.

A final model of the maintenance environment that was included in this study was the change his-
tory of the product during the maintenance phase. Again, the idea is to understand how this particular
environment does business, not to make value judgments. In chart 10, data on how code evolves during
maintenance is presented. For each of the types of maintenance changes a bar graph showing the number
of lines of code and one showing the number of components, added, changed, and deleted are shown.
Regardless of the maintenance type, no or very few components are actually added to the system. This
implies that the maintainers do not radically alter the system’s architecture to make changes. While
significant numbers of statements are added or changed during maintenance the changes do not generally
involve adding components. While numerous hypotheses might be given for this lack of architecture
changes, no definite interpretation currently exists.

H.D. Rombach
Univ. of MD
4 of 21

-

-

CLTL R PR - -

um

4

o

3.2. Comparisons to the Development Environment

This study utilized the past, extensive history of the SEL software development environment as a
baseline for comparison to the same organization’s maintenance environment. This comparison was per-
formed to provide insight into the similarities and differences of development and maintenance and to
provide insight into how the development process affects the maintenance process. (The data used in this
study to characterize the development environment consists only of those projects that were used in the
maintenance study. Therefore, these results may vary slightly with those characterizing the overall
development environment of the SEL.)

One area of interest in this study, was to determine the amount of effort required to isolate and
repair errors in the software system. Chart 11 shows the data for isolating and completing error correc-
tions in both the development and maintenance phases. In each table the horizontal axis represents com-
pletion effort broken down by amount of time to complete the correction, and the vertical axis represents
the isolation effort by the percentage of individual changes that fall into that category. Thus, in the
maintenance phase, 10% of the errors took between one hour and one day to isolate, and took longer than
one day to implement or repair. One, not surprising, conclusion that can be reached from this data is
that error corrections are more expensive in the maintenance phase than during development. This data
simply lends support to.the claim that errors introduced during design but discovered during maintenance
may cost 100 times more than than if discovered and repaired during design [Boehm81]. On the other
hand, another result that this data seems to suggest which is counterintuitive is that the effort to com-
plete the corrections seems to be increasing more than the effort to isolate. Certainly, one would expect
that the most difficult part of maintenance error corrections would be the isolation of the error, when in
fact this data suggests that the difficulty is increased more in the actual implementation of the correction.
The reasons for this trend are not clear at this time.

Another comparison which was made was to look at the types of faults that are uncovered in the
maintenance and development phases. By performing this comparison, insight can be gained into the
kinds of faults left in a system after acceptance testing, perhaps suggesting areas for improving software
testing techniques. Chart 12 shows the percentages of faults in each of six categories for both develop-
ment and maintenance. This fault data is collected in a similar manner in both the maintenance and
development environment. Note that the table also shows the percentage of fault types uncovered only
during acceptance testing. This was included in the study because of the possibility that the fault types
changed significantly late in the life cycle and the faults uncovered during acceptance testing would there-
fore be similar to those uncovered during maintenance. The data implies that there are no significant
differences in the types of faults uncovered during development and those uncovered during maintenance.
This shows that the latent faults found in the maintenance phase are very similar to those found in the
development phase. Unfortunately, this provides very little insight into ways of improving the testing or
overall development process to prevent certain types of errors from occurring. These data only suggest
that the types of errors uncovered in this environment are constant over the entire life cycle.

3.3. Developing for Software Maintenance

A final area of this study was to attempt to characterize software product problems encountered by
maintenance personnel in order to provide feedback to software developers. To date, the data for this
portion of the study has come from interviews with maintenance personnel. The early, and not surprising
conclusion that can be drawn from these interviews is that the software product is not tailored to
maintainer’s needs (chart 13). Certainly, the suggestions of the maintenance personnel for improving the
software product should be examined for future inclusion in standards and guidelines for the software
development process. The primary problems maintainers are experiencing involve the actual software
product.

For example, a major complaint of most maintenance personnel is that Program Design Language
(PDL) is redundant and usually outdated. In the SEL environment, developers are required to keep their
design PDL as part of the software module. Unfortunately, this PDL is frequently obsolete by the time

H.D. Rombach
Univ. of MD
Sof 21

the module reaches the maintenance phase, thus, it is useless to the maintainers. Also, the majority of
the people maintaining the software suggested that this practice be stopped entirely, since the same level
of abstraction is provided to them in the code structure and comments.

A second problem that maintenance programmers had with the software product was that global
information was encoded redundantly For example, global information was encoded in multiple FOR-
TRAN common blocks. Software modification frequently resulted in inconsistent representations of global
information.

Finally, the maintainers suggested that the debug interface of the code be improved. The software
developed in this environment is of a highly computational nature, therefore, in order to test the software
efficiently an extensive debug interface is provided with the systems. The problem with the current debug
interface is that frequently it assumes an intimate familiarity with the code in that the output was of the
form <variable> = <value>. Maintenance personnel suggested that in the future debug interfaces pro-
vide a more descriptive explanation of the output printed.

4. FUTURE DIRECTIONS

We are only beginning to understand the SEL maintenance environment. Regular monitoring of all
SEL maintenance projects will eventually result in better, more reliable, models.

Eventually, we will define guidelines for maintenance and development. Maintenance guidelines
(e.g., baseline data, explicit maintenance process models, and quality models) will provide a better basis
for controlling ongoing maintenance projects, and planning future ones. Development guidelines will
describe how to build software with maintenance in mind in the first place. Such guidelines assume the
existence of an maintenance artifact model which captures our understanding of what information should

be passed to maintainers.

As the software technology used in the SEL changes, our maintenance measurement approach needs
to be refocused. Currently, we are in the process of preparing for the monitoring of our first Ada pro-
ducts. We are especially interested in understanding the differences between maintaining Ada versus
FORTRAN software [[{atz86], and whether these differences can be attributed to the Ada language itsell
or the supporting technology (e.g., object-oriented design).

As both maintainability and reusability of a product seem to be highly dependent on its understan-
dability and modifiability, we expect to coordinate this project more with ongoing reuse—oriented research
projects in the future.

Overall, this project extends the use of measurement in the SEL to the entire software life-cycle. It
should further improve our understanding, and the ability to plan and control future software develop-
ments in the SEL.

H.D. Rombach
Univ. of MD
6 of 21

5. REFERENCES

Basilig4

Basili85

Basili88

Boehm81

Katz86

McGarry85

Rombach87

Rombach88

Rombach89

V. R. Basili and D. M. Weiss, “A Methodology for Collecting Valid Software Engineering
Data,” IEEE Transactions on Software Engineering SE—10(6), pp.728-738 (November
1984).

V. R: Basili, “Can We Measure Software Technology: Lessons Learned from Eight Years
of Trying,” Proceedings Tenth Annual Software Engineering Workshop, NASA Goddard
Space Flight Center (December 1985).

V. R. Basili and H. D. Rombach, “The TAME Project: Towards Improvement-Oriented
Software Environments,” IEEE Transactions on Software Engineering SE-14(6),
pp.758-773 (June 1988).

B. Boehm, Software Engineering Economics, Prentice-Hall, Englewood Cliffs, New Jersey
(1981).

E. E. Katz, H. D. Rombach, and V. R. Basili, “Structure and Maintainability of Ada
Programs: Can We Measure the Differences?,” Proceedings 9th Minnowbrook Workshop
on Software Performance Evaluation (August 1986).

F. E. McGarry, “Recent SEL Studies,” Proceedings Tenth Annual Software Engineering
Workshop, NASA Goddard Space Flight Center (December 1985).

H. D. Rombach and V. R. Basili, “A Quantitative Assessment of Software Maintenance:
An Industrial Case Study,” Proceedings Conference on Software Maintenance-1987,
pp-134-144 (September 21-24, 1987).

H. D. Rombach and B. T. Ulery, “Improving Software Maintenance through Measure-
ment,” Technical Report CS-TR-2131, Dept. of Computer Science, University of Mary-
land, College Park, Maryland (October 1988). Published as an invited paper, IEEE
Proceedings, April 1989.

H. D. Rombach and B. T. Ulery, “Establishing a Measurement-Based Maintenance
Improvement Program: Lessons Learned in the SEL,” Proceedings of the Conference on
Software Matntenance (October, 1989).

H.D. Rombach
Univ. of MD
7 of 21

llt
'

VIEWGRAPH MATERIALS
FOR THE
H. D. ROMBACH PRESENTATION

5794

[

3

ok

Measurement Based Improvement of
Maintenance in the SEL

H. Dieter Rombach
Bradford T. Ulery

Computer Science Department
University of Maryland

Jon Valett
NASA /GSFC

14th Annual Software Engineering Workshop
NASA/GSFC, Greenbelt, MD
November 29, 1989

CHART 1 H.D. Rombach
Univ. of MD
8 of 21

A,

bl

GOALS OF STUDY

Characterize the maintenance process and
product.

Compare maintenance and development
characteristics.

Package findings to improve maintenance
and development
(baselines, models, guidelines).

CHART 2 H.D. Rombach
Univ. of MD

9 of 21

BACKGROUND

e Process studied

O

O

Early maintenance phase

Beginning early 1988

e Maintenance organization

O

O

O

Separate from development

Individual process
(i.e., each change is performed by one person)

Technology level is different from development

e Systems studied

O

o O O O

Six attitude software systems for satellites

All developed according to standard SEL methodology
FORTRAN

Size: 37K to 235K lines of code

Development effort: 3 to 28 staff-years

¢ Maintenance Tasks

O

O

146 maintenance change requests (OSMRs)

Request sources: maintainers, users

CHART 3 H.D. Rombach
Univ. of MD
10 of 21

&l i

[l

IMPROVEMENT PARADIGM

Characterize the corporate maintenance
environment

State improvement goals
o0 State improvement goals informally

o Specify related measurement goals

Plan maintenance
o Plan appropriate maintenance process

o Plan appropriate measurement process

Perform maintenance
o Perform maintenance process
o Perform measurement process

o Analyze collected data and provide immediate feedback

Perform post—mortem analysis and provide
recommendations for future projects

Return to step 11

CHART 4 H.D. Rombach
Univ. of MD
11 of 21

a——

DATA COLLECTION

e Standard SEL Data Collection

Tailored to Maintenance:

O

Weekly effort data (form):
By class (adaptation, correction, enhancement)

By activity (e.g., isolation, change design, implement,
unit/system test, acceptance test)

Change data (form):

Class of change

Effort, by isolation & completion

Degree of reuse (additions, changes, deletions)

Source of problem (requirements, specification, design, code)
Baseline data (interviews):

Initial models of maintenance

Improvement goals

Maintenance problems (e.g., tools, documentation, structure)

CHART 5 H.D. Rombach
Univ. of MD

12 of 21

WEEKLY MAINTENANCE EFFORT FORM
Name: , Friday Date:

Project:

Section A - Total Hours Spent on Maintenance (nciudes time spent on all maintenance
activities for the project exciuding writing specification modifications)

Section B - lél.gubnrsA)By Class of Maintenance (Total of hours n Section B shouid equal fotal hours in

pent on all maintenance associated with a system

Corre

Enhancement |Hours spent on all maintenance associated with modifying
the system due to a requirements change. Includes adding,
deleting, or modifying system features as a result of a
requirements change.

Adaptation Hours spent on all maintenance associated with modifying a
system to adapt to a change in hardware, system software, or
environmental characteristics.

Other Other hours spent on the project (related to maintenance) not
covered above. Includes management, meetings, etc.

Section C - rsi.%%s‘)By Maintenance Activity (Total of hours in Section C should equal total hours in

Isolation Hours spent understandi'ﬂa thefailure or request for en-
hancement or adaptation.

Change Hours spent actually redesigning the system based on an

Design understanding of the necessary change.

Implementation| Hours spent changing the system to complete the necessary
change. This includes changing not only the code, but the

assoclated documentation.
Unit Test Hours spent testing the changed or added components.
Includes designing tests and writing test drivers.
Integration Hours spent testing the components integrated into the
Test system. Includes hours spent on system test.
Other Other hours spent on the project (related to maintenance)

not covered above. Includes management, meetings, etc.

CHAR H.D. Rombach
T Univ. of MD

13 of 21

5150G(1)-4

Name:

MAINTENANCE CHANGE REPORT FORM

OSMR Number:

Date:

Project

SECTION A: Change Request information

Functional Description of Change:
What was the type of modification? What caused the change?
. Correction —— Requirements/specifications
- Enhancement — Software design
—— Adaptation Code
— Previous change
— Other

SECTION B: Change Implementation Information

Components Changed/Added/Deleted:

Estimate the effort spent isolating/determining the change:
Estimate the effort to design, implement, and test the change:

1hrio
1day

1dayto 1weekto

<thw 1week 1month 1 month

Check all changed objects:

—— Requirements/Specifications Document
— Design Document

If code changed, characterize the change (check most
applicable)

— Initiaiization

— LOgic/control structure

— Code (e.g., changed flow of control)
— JyStem Description — Interface (Intermnal)
— User's Guide (module to module communication)
Other —— Interface (external)
— (module to external communication)
— Data (value or structure)
(e.g., variable or value changed)
—— Computational
(e.g., change of math expression)
— Other (none of the above apply)
Estimate the number of lines of code (Including comments):
added changed deleted
Enter the number of components:
added changed deleted

Enter the number of the added components that are

total “foused with
totally new ly reused il

CHART 7

H.D. Rombach
Univ. of MD
14 of 21

5150G(1)-3

CHARACTERIZE PROCESS

e QUESTION:

What types of maintenance requests are made?

e« OBSERVATIONS (forms):

Number Effort
of Changes

e INTERPRETATION:
Enhancements may be due to

Maintenance characteristics (e.g., emphasis on improving
usability)

Development characteristics (e.g., imprecise requirements)

9]

ki

' H.D. Rombach
— CHART 8 Univ. of MD

15 of 21

CHARACTERIZE COST

QUESTION:

How can the cost of maintenance be estimated?

OBSERVATIONS:

o Effort, total (staff-years): [0.07,1.7]
o Effort per year (% of devt effort): (1%, 23%]
O Effort per maintained MLOC (staff-years): [1.5, 24]
o Effort per "modified" KLOC (staff-years): [0.21,1.25]
o Effort per 100 changes (staff-years): [1, 15]
INTERPRETATION

No obvious correlation between maintenance effort
and (development effort, system size)

Mainly a function of the amount of maintenance
performed

H.D. Rombach

CHART 9 Univ. of MD
16 of 21

kil

CHARACTERIZE
CODE EVOLUTION

e QUESTION:

How does the code evolve during maintenance?

¢ OBSERVATIONS (forms):

Adaptations:

ADD CHG DEL

Corrections:

ADI] CHG [DEL

Enhancements:

ADI[CHGDEL
LOC

ADIT} CHG DEL

ADI} CHG DEL

—ADD CHG DEL
Components

e INTERPRETATION:

Maintainers do not change the system architecture.

H.D. Rombach

CHART 10 Univ. of MD
17 of 21

CHARACTERIZE CORRECTIONS

QUESTION:

How much effort is required to make corrections during
maintenance and development.

OBSERVATIONS (forms):

Development:
Isolation | Completion Effort
Effort < Hour < Day Longer
< Hour 48 10 1
< Day 11 16 4
Longer 2 __ 3 4
Maintenance:
< Hour [4 16 ¢ 9
< Day 0 31 10
Longer ____9 _______ !_)_ ______ 2_1____
e INTERPRETATION:

Error corrections are more expensive during
maintenance than during development.

Effort to complete corrections increases more than
effort to isolate.

H.D. Rombach
CHART 11 Univ. of MD
18 of 21

CHARACTERIZE FAULTS

e QUESTION:

- Are the types of faults detected during maintenance
different than those detected during development?

e OBSERVATIONS (forms):
Types of faults:

| Structure ____ Devt Acc Test Maint
Computation 14% 20% 11%
Data Value 25% 26% - 28%
Initialization 16% 16% 25%
Ext. Interface 8% 7% 8%
Int. Interface 19% 12% 15%
Logic, Control 18% 18% 13%
| Other___ ____ - _____ R 2% _

e INTERPRETATION:

The same types of faults are found in maintenance
and development.

H.D. Rombach

CHART 12 Univ. of MD
19 of 21

CHARACTERIZE
PRODUCT PROBLEMS

QUESTION:

What product characteristics create maintenance
problems?

OBSERVATIONS (interviews):

0 Outdated PDL frustrates maintainers.

o PDL is redundant; it provides the same level of
abstraction as code structure and comments.

O Global information encoded redundantly.

O Debug interface assumes intimate familiarity with code.
(<variable> = <value>)

INTERPRETATION:

The product is not tailored to maintenance needs.

H.D. Rombach

CHART 13 Univ. of MD
20 of 21

FUTURE DIRECTIONS

Continue to build maintenance models &
baselines.

Provide guidelines for maintenance.
Baseline data
Maintenance process model

Quality models (e.g., for resource estimation)

Provide guidelines to development.
Maintenance product model

Development process model to support maintenance

Expand to monitoring the maintenance of
Ada systems.

Model Ada products and process.
Compare to FORTRAN observations.

Assess implications of OOD & Ada on maintenance.

Learn from this study for reuse of experience
in general.

HAR H.D. Rombach
C T4 Univ. of MD

21 of 21

S/94

SESSION 3 — SOFTWARE REUSE

M. Lehman, Imperial College
J. C. Knight, University of Virginia
C. Braun, Contel

K. Thackrey, Planning Analysis Corporation

o

0

———

oy

Software, Systems and Application Uncertainty and its Control Through the
Engineering of Software

M M Lehman

Lehman Software Technology Associates Ltd
and
Department of Computing
Imperial College of Science and Technology

London SW7 2BZ

Abstract

Computers are being applied more and more broadly to address applications in all areas of human activity, penetrating
ever deeper into the very fabric of society. As a consequence, mankind is becoming, collectively and individually, ever
more dependent on software and on the integrity of that software. In this context the term software includes both the
systems software that constitutes a fundamental part of the operational configuration and the programs that implement
each individual application. Integrity is a many faceted concept that has to do with the availability of programs
whenever they are needed and their correctness in relation to the circumstances at the moment of execution or, more
precisely, when the results of computation are applied. A program must produce a solution that is correct and relevant
when used. It must continue to do so whenever required over the lifetime of an application and of the systems that
realise and support it. All this despite continuing change in a dynamic world.

This paper opens with a brief discussion of the fundamental concepts of software engineering. The discussion leads to
the formulation of a Principle of Uncertainty that applies, in general, to all computer application in the real world. The
principle follows because any program is a model, albeit many times removed by abstraction and reification from the
real world it reflects and addresses. The consequences of this basic fact leads to recognition of a need for a disciplined
technology associated with a controlled process for definition of each application, its operational domain and the
envisaged system with its software; and for their development, application and evolution (maintenance).

The paper continues with a brief analysis of the control of uncertainty through the application of software engineering
technology. This is seen as the discipline that permits one to limit uncertainty and its consequences through the
introduction and control of appropriate development processes and the systematic and disciplined application of
methods and tools. Finally the paper places the views presented into the context of other observations about the state of
the art in software development and remarks on the relevance of the issues raised to society as a whole.

Keywords

Software dependency; evolution; correctness; user satisfaction; uncertainty; discipline; control of assumptions; software
engineering, methods, tools

mmld453[papers}
17 November 1989

M. Lehman
Imperial College
1 of 28

-1-

1 Fundamental Concepts of Software Engineering

The need for a software engineering discipline was first discussed at the international Garmisch Conference in 1968
[NAU69). Since then many opportunities for progress have been conceived, investigated and, where appropriate,
developed and introduced into practice. In general, such work addressed specific problems. The first major advance in
program development was the introduction of, so called, high level programming languages (as distinct from machine
lmguagu)forpmgmncxeatim’l‘hishad.infact,pmcededmecmceptofasoftwateengineetingdiscipﬁnebymore
than a decade. Increasingly such languages reflect concepts in which an application developer thinks and expresses
himself.Butindusnyhasbeenshwinabmdaﬁngﬂnoldermxhh\emienmdhnguaguwhosedhectmefapmgﬂm
creation makes reliable and responsive program development and adaptation so much more difficult. With the
increasing complexity of applications, their criticality in societal terms and, therefore, the ever growing need for
dependability and adaptability transition to the use of languages appropriate o each application must be speeded up.

The move to high level, application oriented, languages was followed by the study of programming methodology
{GRI78), recognition of the importance of structure and the development of a variety of structured and other
programming methods. Application of these concepts led, in tum, to recognition of the need for specification of a
program prior to its implementation. This cventually gave rise to pressures for wider use in program development of
formal (mathematicaily defined), rather than natural, languages [JON80; TURS7]. Use of such languages had,
heretofore, been largely restricted to the coding activity that had long been seen by many as the essence of
programming. It now became apparent that major benefit was to be obtained from their application in program
development activities that precede coding: probiem definition, requirements analysis and system specification for
example. It is these so called up from activities that ultimately determine operational characteristics. Yet they are, in
gemLcmsaﬂymwdinmasoﬁwmdevekmnmmjecn.Andcvenifundermkenbminanannallnngtmge,
ambignityisdiﬂiuﬂlmavdi,cmdswmycmnabedemnmwdnacmmmplmssbesymmﬂy examined.

The concept of specifications and the development of formal languages for program development activities other than
coding had originally emerged in academic circles from the realisation that the correctness, in some sense, of a program
could and should be demonstrated by a process of proof based on rigorous mathematical argument [HOA69] or, even
better, should be a consequence of a rigorous (mathematical) creation process [DIJ69). Testing, the generally accepted
mwmddemmﬁngmogmmwcepmbﬂhymmvudunamwmofamgmn. It can only show that an
error is present [DIJ72]. : was pursuit of this goal of constructive correctness that underlay the concepts of
programming methodology, a developing discipline for programming in the small. 7

Unfortunately, advances in programming methodology produced only limited benefit in the industrial development and
evolution of large programming systems and of the larger systems in which embedded computers and their software
play a controlling role. Development of such systems has become known as programming-in-the-large. Slow progress
in improving the technology employed in these areas was, in part, due (o hesitation to impose the discipline inherent in
adopting the rigorous approach to software development {JON8Ob] and to both real and imagined difficulties in so
doing. More fundamentally, however, programming-in-the-large raised issues such as variety (BEL76], uncertainty,
complexity and continuing evolution [BEL76; LEH80] that did not, in general, arise in the development of smaller
programs and had, therefore, not been so extensively considered. The concepts and methods arising from studies of
programming-in-the-small, while having an important contribution to make, did not address the major problems from
which large system development has so long suffered.

The concepts of large programs, of program dynamics and of their evolution had, however, been around since the late
1960s [LEH69]. Studies of these phenomena [BEL71, 72; LEHSS] led inevitably to the realisation that the various
stages of development over the lifetime of a software system interacted and influenced one another significantly. Local
optimisation, for example, oftcn leads to penaltics at later stages of development and during subsgquent usage.
Conversely, a little extra directed investment and effort during one activity can subsequently yicld significant benefit.
Hence there has emerged the process based approach [SPW84, 86, 87) to software development alrecady mentioned.
This recognises that that process must be disciplined and addressed in its entirety, even if only to achieve some
appropriate balance between global and local optimisation.

Recognition of the need to define and follow a disciplined process is perhaps the most important advance in system
development of recent years. To achieve it one first needs a process model [LEHS0, 85; SPW34, 86, 87] that defines a
systematic and coherent path from formulation of an application concept via realisation of a usable system to its
subsequent evolution. Process models may be generic or specific. Whether they can reasonably be considered
algorithmic is a matter of some controversy [OST87; LEH87c]. Models are developed by first identifying technical and
management activities required, the extent of information capture and storage, and the interfaces, relationships and
dependencies between all these. Together they provide the structure and composition of the basic process. Given this,
one then selects or develops methods to execute technical development activities. The introduction of defined and
disciplined methods permits the application of computer based development tools. These provide mechanised support
for individual activities and their systematic control. If appropriately conceived, the totality of methods and tools

M. Lehman
Imperial College
2 of 28

-2.

provides support for all aspects and stages of system evolution. True overall effectiveness will, however, be achieved
only if data representation, methods and tools can and are integrated to provide full and coherent lifetime support. And
even then, a process is only as good as is the rigour of its application. This is why techniques and tools to facilitate and
control planning and management of a group and its activitics, the project, must be included when planning and
implementing integrated lifetime development support. Equally one requires both to support management of the
emcrging software and system.product during development, its subsequent release to users and its evolution. Such
product related function is exemplified by the need for management of component variants and versions, system
configuration and fault fixing, and the control of sysiem evolution.

Forthisgtwvarietyoftoolstobeabletoinmactandmwppmoneanother,andmachieveadequatesuppmfor
application and product evolution, the collection must, as indicated above, be associated with an information
repository . This retains all information relating to the development process, to the product produced and to the project
that produces it for as long as it may be nceded, some over the lifetime of the application. Facilities to support
communication between machines and between people, office and document preparation facilities and so on are also
required. If created as a coherent and integrated set, the resultant family of tools and services is termed an Integrated
Project Support Environment (IPSE) {LEH87a, b].

The concepis and approaches outlined above reflect enabling technologies of an emerging software engineering
discipline. Much of the associated technology is available for transfer to industry and the commercial world. But the rate
of its penetration is too slow in relation to that at which computer systems are being introduced. To achieve an adequate
rate of transfer and application in relation to the spread of computerisation represents a major challenge [LEHS6). An
cssential ingredient of any response is the increasing use by industry of software engineering expertise, in house or from
appropriate exiernal services. In particular industry must leam to understand the differing roles of programmers and
software engineers [LEH86]. The former have responsibility for development of specific products; the latter for
defining, developing and, perhaps, managing the process and its support. The difference between these roles is
fundamental. Both must be supported if software that is to remain satisfactory over its entire lifetime is to be achieved.
The titles given to those who fulfill these tasks may not be universally agreed [BLUS9]. The fact is they are different
and each is important in its own right. One must accept and willingly pay for both.

Following on the preceding discussion attention may be drawn to another fundamental property of software.
Engineering technologies that have evolved in the past have provided development and management disciplines for
artifacts embodied in physical form. The inventors, architects, designers and implementors of such artifacts have been
controlled and constrained by laws of nature, by the properties of the materials processed and by the visible
@sthetics of their production. Moreover, product evolution has occurred over hundreds if not thousands of years, has
encouraged and been supported by the parallel development of mathematics and natural sciences, and has created the
market forces that have led to product application. Science, technology and application have evolved in step.

Software technology is fundamentally different in each of these characteristics. It has evolved from primitive beginnings
in a matter of decades. Mathematics provides a theoretical basis and a framework, contributing notation, techniques and
methodology. A more general theory for software development has, however, been slow in developing relative to the
growth in computer power and the spread of computers. The demand for software has outpaced the availability of an
adequate technology to produce it. Industrial development has been driven by market demand that is often uninformed
and not discriminatory. The most distinctive feature of software development, however, is that it consists entirely of
textual manipulation {LEH84b]. From first verbalisation of an application concept, whenever a system or a part of it is
_developed, fixed, enhanced, adapted or extended, text is added, changed and/or eliminated to achieve the desired result.
In this process no natural laws, physical constraints or material properties operate. The manipulator is free, in a sense, to
do what and as he pleases. The only constraining influences are the syntactic and semantic rules applying to the
languages in which text is expressed at each step, pragmatic procedures and constraints that are introduced, and the
enforcement of all these by adequate management and comprehensive mechanisation. The end result is visible only as a
static textual model. That that model is satisfactory can be determined only by semantic interpretation or by
examination of the results of execution. In addition, abstract artistic or mathematical and zsthetic judgements may be
appliedwlwntextispenued.'l‘lwmofesu'ingemtherum.pmcedumsmdjudgemems.memedomey provide an
mlogwofdteconsminuaisdnginmephysicalworkimdduebythedisciplhwdemndedbydwcomumtacﬁvixy
of many people over an extended time. Therein lies the real significance of formality, the introduction of method and
the provision of supporting tools.

2 Uncertainty _
2.1 Introduction to the Main Theme

The preceding overview of software engineering, an excerpt from a recently published paper [LEHS9), provides a
background for the main theme of this paper, an examination of the concept of Program Correctness. This is clearly an

M. Lehman
Imperial College
Jof 28

| Wik

bif

-3-

important issue in an age when society, individually and collectively, is becoming ever more dependent on computers
and, therefore, on software. Issues such as the relisbility of development and maintenance technologies, and the relative
reliabilityofdecisimbynunmdbymachhwcannmbead(huaedhue.hpassingitmulmmvu.bcmwdm
increasing use of method-based, often formal, program specification and development {JON80, TUR87] and of
computer-based wols (STESS, LEH87a] represent major progress in both these areas. The question 1o be addressed here
is more basic. Is there a limit to the confidence one may have in the correciness of the results of execution of programs
that solve problems in the real world? In response to this question, three categories of uncertainty about the behaviour
ofmmmrdaﬁvemﬂwpmpe:ﬁuofmeirenvhmmmmomlm In combination they lead to an Uncertainty
Principle of Computer Application [LEH89]. A brief discussion of the role of software engineering in minimising
uncertainty and its significance to society at large concludes the paper.

2.2 Program Classification

It has been proposed that programs may usefully be classified into three types [LEH80, 85a].

An S-type program is one for which the only criterion of acceptability is that it satisfies some pre-stated and (10 be
considered) absolute specification. The specification is the sole, complete and definitive determinant of program
properties. It is the only arbiter of the program being correct and satisfactory. The validity, relevance or @sthetics of the
specification are extraneous issues, as are all program properties that are neither explicitly included in the specification
or (formally) inferable from it.

A P-type program is one that has been created (o solve some stated problem. The criterion for success is, here, that the
solution obtained on execution is correct in a sense stated in or implied by the problem statement. If properties (side
effects) not addressed in the problem statcment are observed during program execution or otherwise, their implication
on the correctness or satisfactory nature of the solution may be examined. If considered necessary, the statement must
be modified and the program adapted and re-run to obtain an acceptable solution.

An E-type program is one developed to solve a probiem or implement an application in some real world domain. The
consequences of execution, the information conveyed to human observers, the behaviour it induces in attached or
controlled artifacts, together determine its acceptability, value and the level of satisfaction it yields. Note that
correctness has not been included amongst the criteria. That term should only be used to express a precise relationship
based on calculable equivalence between a program or other formal representation and some higher level representation
(specification) [TUR87]. The notions that replace the boolean concept of correctness are essentially fuzzy but may
include quantitative as well as qualitative measures. Program acceptability depends on a subjective process of human
assessment. It is the detailed behaviour under operational conditions that is of concern.

The P-type program is intermediate between S and E-types and need not be separately considered in the present
discussion. One may, indeed, usefully definc an A-fype program that is the union of P and E types. The modified
classification schema bisects the universe of programs into those for which correctness, in the sense suggested above,
is meaningful and those for which (at the whole system level) it is not.

2.3 The Process of Development

The parenthetical observation in the previous paragraph is of fundamental significance as will become clear from a
closer examination of the software development process. Note that wherever the terms process or development
process are used in this paper the reference includes both initial development and system or program evolution
(colloquially termed maintenance) e

The simple sequential process model [LEH84b] on which the IST ISTAR environment was based [LEH87a], its multi
dimensional realisation and their predecessors (ZUR67; LEH8S5], all represent the process as a multi-step sequence.
Each step involves base and iarget representations that may equally be referred to as specification and
implementation. Only the first step, the first recorded verbalisation of the application, has no predecessor representation
or specification. That role is played by the application in its domain, its objects, attributes, relations, events, activities.
As mentioned above these exist, in general, in a continuous and unbounded domain and cannot be completely or
precisely represented or even known.

The model or representation produced in the first step involves, therefore, either use, in part at least, of a non-formal
representation or a major act of mental abstraction. The latter cannot be permitted since it is a transient and
unobservable act that cannot be recorded, controlled or, in general, revisited. In the case of the former, a representation
that is in part non-formal must be treated as if it were in its entirety non-formal since the consequences of ambiguities,
incompatibilities and omissions that can be read into its non-formalised parts reflect into any formal elements of the
complete representation. Hence the development process for E-type systems i and must be rooted in a non-formal
representation and will display, at least some, of the characteristics of such systems.

M. Lehman
Imperial College
4 of 28

- o

IR Y

-4-

Towards the end of the development process one obtains the solution system. Its most critical element, the executable
code, is totally formal otherwise it could not serve as a computer program. As such it is essentially unambiguous and
complete in relation to a given execution system (machine, peripherals and support software) though different machines
might display different behaviour in execution. The final, operational, system is not, however and in general, entirely
formal. It will, for example, include development and user documentation much of which will have to be in natural
language. Such documentation is, in general, essential for successful usage. Its ambiguities or omissions can be a major
source of misusage, unsatisfactory execution or results and so on. That is, the target system 100, in its own right, must
display some characteristics of non-formal systems. Note also that unlike the initial representation, this final
representation is no exception to the rule stated above. In association with other material it becomes the specification of
a further step, the next step of system evolution.

The process of E-type program development may, therefore, be described as transformation of a non-formal
representation of a real world application in its application domain to a formal representation of the programmatic
part of a solution system in association with its non-formal support system operative in the real world solution domain.
The representation evolving during the transformation process will be a structure comprising many elements, sub-
elements and so on. Some of these elemental representations will make the transition from non-formal to formal
representation, each at an appropriate stage of the process. From the step that any element, when viewed as a
specification, is formalised, correctness is applicable and must become the initial criterion of derived element
acceptability, a judgement based on calculable criteria. Its semantics in terms of the behaviour of the element (in
isolation) in execution can be known and is, in no way, uncertain, Each further step can produce an S-type element.

That is, all systems relating to the real world are of type E but the S-type program plays a major role in the development

. From the step in the process where a representation can be expressed in formal terms, that must be done
[JON8Ob]. From then onwards the developer can concentrate on S-type programs. Programmers (in the conventional
sense) should never be given any program object other than an S-type to create.

The objective of the development process, however, is to produce an artifact that serves some purpose in the real world.
Therefore, after fulfilling all relevant verification obligations to demonstrate that a step has produced a correct target
clement, validation is also required [LEH84b]}. Validation examines the real world implications of the formal semantics,
determining the properties of each model in terms of properties not contained in or deducible from its specification. It
should assess the element from three points of view. At the level of detail reached, the semantics of the model must
satisfy the needs of the intended purpose. The model must also appear to define a satisfactory solution system. Finally
it must be determined that, as the specification of the next step, the representation can be expected to provide a base for
a viable continuation process. If, from one of these points of view, the validation process indicates an inadequacy of
the current representation, it generates pressure for change in that representation, in its specification and, at least in
principal, also in those of earlier steps. Where that representation is formal, processing of such a change must be itself
also be fully formalised if S-type development is to be preserved.

2.4 Godel Type Uncertainty

From the above it follows that an E type program may be described as a model of a model * - - of a model of a
computer application in the real world [LEH80]. Turski regards each pair of neighbours in this chain of models as a
theory and as a model of that theory respectively or, equally, as a specification and an implementation of that
specification [TURS1]. At one extreme this view is reflected in his interpretation of the "two-legged” software-
development process model [LEH84a]. Turski regards this as one in which a description of the real world application
and the final implementation are both models of a specification that forms the bridge between concept and realisation.
At the other extreme, the base and target representations at the core of each step of the canonical LST software (and
systems) development process paradigm [LEH84b], for example, also form a theory and model pair.

It follows that every E-type program is Godel incomplete [GOD31), an instance of Bondi's more general observation
{BONT77]. The properties of such programs cannot be completely known from within the system. Now those involved in
system development and usage become an integral part of the system. Their mental activities direct and drive the
process of system development and evolution. The degree of satisfaction that the operational system yields is
ultimately determined by the action and inaction of designers and users. Thus neither developers nor user can fully
know system properties. Godel incompleteness is transformed into Gadel-type uncertainty [LEH89]. The process must
seek to limit this uncertainty to representational incompleteness.

2.5 Heisenberg Type Uncertainty

A second form of uncertainty arises from system development and operation. As a consequence of the execution of the
development process, understanding of the application changes. User ambitions are stimulated. Alternative methods of
solution are recognised. Apparent opportunities for improvement abound. Moreover, the system must evoive. Anyone
using computers seriously will have experienced the continuing maintenance that the associated software appears o

M. Lehman
Imperial College
5of 28

-5-

require. This is not entirely due to shortsightedness on the part of either users or developers. All antificial systems must
evolve [SIM69] if they are to remain satisfactory; but the rate of computer system ¢volution needs to be substantially
greater [LEHS85]. One source of the continuing pressure for change in E-type systems is that each system includes an
implicit model of itself. Moreover, the application, its domain and human perception of both change. It is the associated
feedback that drives system evolution. Software adaptation is the primary means whereby such evolution is achieved.

Intrinsic delay between recognition and implementation of a need or opportunity for change means that mismatch
between human desires and sysiem properties cannot be permanently eradicated. Satisfaction with the system declines
unless the software (which largely determines system properties) is repeatedly updated (first law of program evolution
(LEH74, 85]). Moreover, as the system evolves, change implementation requires combinatorially increasing relative
effort (second law of program evolution [LEH74, 85]). Thus the more precise knowledge is of the application, its
solution and their respective domains, the less is it possible to maintain satisfactory system behaviour and satisfactory
delivered results. The source of dissatisfaction is a function of perception and understanding, and cannot be completely
predicted. Hence the system displays Heisenberg-type uncertainty [LEH77]. Here too, the process and its
management is key to minimisation of the consequences of this inherent uncertainty.

2.6 Pragmatic Uncertainty

There is also a third type of uncertainty [LEH89]. The domain of an E-type application is, in general, unbounded,
effectively continuous and dynamic, always changing. The solution system is finite, discrete and, in the absence of
human intervention, static. The process of deriving onc from the other involves a variety of assumptions about the
application, its domain, perceived needs and opportunitics, human responses to real world events, computational
algorithms, theories about all these and so on. Some assumptions will be explicitly stated, others will be implicit in the
design and implementation detail. All will be built into the final system. ,

In a dynamic world the facts on which any assumption sct is based will be modified by system-exogenous events.
However carefully the validity of assumptions is controlled when adopted, some will be less than fully valid when the
results of execution are used. But this is when, to be fully satisfactory, a program needs to be correct. Correctness of a

program specification and its derivation is a means to that end, necessary but not sufficient. The assumption set must be
maintained correct by appropriate changes t0 program or documentation texts in a time frame determined by the
application and the nature of the required change. This is impossible even if all assumptions were explicit and their
location precisely known, Pragmatic uncertainty in computer sysiem behaviour is inevitable. It is intrinsic to
mechanised computation and is intimately linked to Heisenberg-type uncertainty.

2.7 An Uncertainty Principle
This analysis leads to an Uncertainty Principle for Computer Application:

The outcome, in the real world, of software system operation is inherently uncertain with the precise area of
uncertainty also not knowable [LEH89].

Gtdel-type uncertainty is, primarily, a matter of formalism, of theoretical interest but unlikely to have significant
practical implications. The consequences of the Heisenberg-type is the never ending maintenance burden that
accompanies all serious computer usage. Pragmatic uncertainty is the most challenging. It leads to concerns that must
increase as computer based systems become larger, more complex and more intimately interwoven with the life and
activity of individuals and of society at large. It is this which is of most concem to the present workshop. Research and
development in programming methodology and software technology is providing methods and tools to ensure that
programs can be satisfactorily developed and maintained. This work must continue and processes that exploit the results
introduced into general industrial practice.

3 Control of Uncertainty Through the Engineering of Software

The principle just stated leads to immediate, practical conclusions. The joint responsibility of user, software engineer
and programmer (in the very wide role as outlined at the end of section 1 to include those who, for example, undertake
activities often described as systems analysis, design, coding integration and so on) is to reduce, ultimately to minimise,
the encounter with uncertainty or the consequences of uncertainty.

The user is primarily responsible for defining the application and the application domain. In doing this he must seek 10
ensure completeness of his discussion and analysis including consideration of the likely impact of system installation
and operation. Such prediction is no mecan task especially in view of the close and intimate coupling between the system
and its users, individually and collectively. The likely average reaction of those interacting with the system in usage is
perhaps predictable. The specific reactions of individuals to particular situations is not; yet it may have dramatic

M. behman
Imperial College
6 of 28

-6-

consequences. Equally the user must consider the nature and likelihood of change in the the operational environment or
in the goals of the application, the possible consequences if incompatibilities arise between the system and the
application domain as it is at the time of execution. The user is the ultimate arbiter for the validity of assumptions
embedded in the sysiem and must accept responsibility for the consequence of decisions which ultimately become no
longer valid.

Programmers have involvement in and responsibility for all stages of definition, design and implementation of software
systems as per the wider definition summarised above and discussed previously [LEH86]. In this capacity uncertainty
has direct implications. In the first instance, and throughout the development and lifetime of the system, they must
consider, record and take account of the user’s observations, definitions and forward looking perspectives. As decisions
are taken and assumptions consciously made or implied by analysis, design and implementation activity, they must be
captured and faithfully recorded. Above all they must accept the discipline and constraints imposed to assure not only
initial correctness but to make possible the subsequent evolutionary adaptation of the system to changing circumstances.

One facet of the role of the software engineer is as a process engineer developing, evaluating or introducing processes,
methods and tools into practice. Another calls for involvement with development or maintenance of a specific product
as process manager or support engineer. Each role is influenced by the need to take account of the inherent uncertainty
associated with software development and the maintenance of user satisfaction. In specifying, evaluating and acquiring
or developing methods and tools, significant emphasis must be placed on the need to highlight, capture and record
assumptions in retrievable fashion, whatever their basis or nature. Linkages must thercfore be provided in all relevant
tools that alert the participants in the programming process whenever certain actions are taken to provide an appropriate
pointer 10 any such assumption. It is not possible to present here an exhaustive analysis of the circumstances when
such action is desirable or necessary. An indication of the breadth of concem is provided by a list that includes such
varied activities as the choice of factors to be considered and to be excluded from consideration in the implementation,
the adoption of specific theories covering some aspect of the application, the selection of algorithms, design decisions of
any sot, the fixing of branch conditions, the adoption of computational procedures, assignment of values to data and
constants and so on.

The discussion of the previous paragraph primarily addressed the issues raised by pragmatic uncertainty that causes
software pollution through the gradual erosion of assumption validity. Consideration of Heisenberg type uncertainty,
while interacting strongly with the former, focuses attention more specifically on the development process; its structure,
activities rigour, degree of mechanisation and support. The present paper can only provide an introductory overview,
indicating that control of evolution driven by this class of uncertainty is a major element of the software manager's task.
Not for nothing has software management been long described as the management of change. And in many ways this
might be seen as the prime responsibility and opportunity for software enginecring and the software engineer.

Simply summarised, the process of development and evolution must be designed, not only to produce a product that has
the desired, even optimum, atiributes at the time of delivery. It must ensure that the initial satisfaction is maintained and
even enhanced throughout the lifetime of the system. All stages of the process must be designed (methods and tools) to
identify and record areas in which changes may occur and those in which, if changes occur, the consequences to the user
or to adaptive action are non-trivial. It must also provide and integrate management decision and control procedures to
ensure that appropriate procedures are adopted and practised with regard, for example, to change authorisation,
planning, execution and installation. This, in tum, implies that the necessary information is available or drawn to the
aitention of both the manager and those involved in technical implementation. The problems of information capture,
retention and retrieval become central and one in which rule and knowledge based systems find important application.
'Recognition of the above process needs is not new. Their unification in the context of the uncertainty theory merely
reinforces what has previously been recognised and adopted. In association with other necessary steps not discussed
here, they present a major challenge for the continued refinement and extension of the software development and
evolution process, and the methods and tools that are its building blocks. Software engineering faces a major
opportunity and challenge.

Godel type uncertainty poses somewhat different, perhaps less immediate, challenges. It must not be ignored since it has
an impact on modelling and achieving complete understanding of the process. In particular, its implications may arise in
the the design and support of formal aspects of the process. The software engineer must, however, have at least an
understanding of the problem and when, if at all, it must be taken into consideration

4 Conclusions

miumaipsecﬁonthisplpahuprwenwdwlmmyafustemounuappwuahrgely philosophical and theoretical
result of little consequence. It is to be hoped that the brief introduction to the challenges this result poses to software
engineering and (o ways and means whereby this chalienge may, indeed must, be met, has convinced the reader

M. Lehman
Imperial Coliege
7 of 28

An altermative reaction may be to say that most, if not all, of what has been said is widely known. It has, undoubtedly,
bngbeenmeomdemgudewquﬂnyofmm”ﬁwmdevebpmtmdofnsproductfallsfarshonof
the levels of reliability demanded by the expanding range of computer application. Concern was first publicly expressed
aldieGmmschInumnmalWatsMponSoftmengmemng [NAUG9]. Dijkstra [DUJ69, 72}, Hoare [69, 71], IFIP
programming methodology working group WG 2.3 [GRI78] and many others have been stressing the need for program

correctness for over two decades. Debate on SDI led by Pamnas [PARSS] and others, and on the uses and limitations of
pmoftechnxques[DEM?9 VAR79)] and program verification [FET88, VARS89), mﬂectsnongcmcemwxmmmewdet
computing community. Neumann [NEUM], Thomas [THO89] and others are exposing the limitations of computer
control in life-critical applications. Each of these authors discusses specific aspects of the problem of reliable software
development.Rehablmyuhaeusedmlhemseﬁ:ﬂnpmdmtwﬂlpmducemfacmmdmwhawvercxecuwdm
its subsequent lifetime. Their concem is not confined to academic circles. Awareness of the problems experienced in
softwase development as reflected in the management of the development process is widespread in industry. In most
mmelﬂmehyebemanrﬂmedtohumfaﬂm'Whycmtmmmmasbel&codengmws?'isafrequently

heard plaint in industry.

It must be recognised that the introduction and continued application of software dependent computer sysiems faces
problems not relevant in other disciplines [LEH8S, 89]. Real and fundamental differences exist between the
development and adaptation (evolution) of software and that of physical artifacts. Yet, as computers are applied ever

more widely, the implications of these differences have not been sufficiently considered in secking to improve the
industrial process whereby applications are implemented.

Further problems arise from the need to embed assumptions about an ever changing application environment in the
software, change that is accelerated through creation of the software and use of the computer. It is the thesis of this
paper that uncemmty in the detailed propemes of software and its behaviour when execunng and, therefore, in
computer application is inescapable. This fact is a challenge o socnety in general, to prime movers in computer
application, to implementors and o supporting software engineers in particular. The first become involved when they
sebaandandmtheapplmaummddenmnmdwuopemuofﬂwendsyswm the latter two classes because they
conceive, control and execute the process of implementation, Uncertainty will always be there. It is the responsibility of
prime movers that society is not unnecessarily exposed through thoughtless application. To avoid this, they and society
at large must be informed of the threat. It is the responsibility of software engineers and implementors that the public
are informed, and to ensure that risks associated with uncertain behaviour and the consequences, should the
unanticipated be encountered, are minimised. Rigorous enforcement of advanced software technology, systematic
application of disciplined methods and mechanisation can make a fundamental contribution to this end. Their
widespread, if not universal, adoption must be accepted as an urgent societal priority.

Relative to the concems expressed, some aspects of the phenomena discussed in the present paper may appear to have
lile practical significance. This is not so. These phenomena and issues related to them reflect basic and intrinsic
properties of the process of computer program development, usage and evolution, an activity that intimately effects the
whole of mankind. They provide a umfymg concept to manifold observations with concepts and « components of a theory
of software development. The latter is essential for further steady progress towards a reliable, responsive and cost
effective technology for the development of computer based systems that can be commissioned with every confidence

that they will provide continuing satisfactory service.

Computer usage is penctrating ever deeper into the very fabric of society. The dependence of mankind on the
correctness of computer systems in general, and on sofiware in particular, becomes ever greater. Correctness is,
primarily, a relationship between the state of the appllcauon domain at the time when the results of a computation are
applied and the software which pn-.smbes the computation. The technology, extension and wide application of formal
methods 10 maximise the opportunity for initial correctness over the process stages where they can be applied is a most
significant first step. To ensure continuing safety in system usage it must be accompanied by the wider use of advanced
software engineering technology. That discipline, as reflected in the software development and evolution process, in the
methods used and in process mechanisation, is the means whereby uncertainty and the consequences of uncertainty can
be minimised and user satisfaction maintained. Above all, however, emphasis must be placed on responsibility,
conscientiousness and care in the selection, definition, development and control of computer applications. This is a
matter that concems not only computer scientists and software engineers. It is a matter for industry, for government, for
all levels of the educational system, indeed for all of mankind.

Given the increasing dependence of mankind on software based systems it is a matter of urgent priority to cope with
these issues. Strict discipline and mechanisation through the application of advanced software engineering in all its
aspects offers a practical solution, reducing uncertainty to the level at which it is present in all human activity. The time
for such introduction is ripe and the paper has pointcd to ways in which it may be achieved.

M. Lehman
Imperial College
8 of 28

L] References

[(BEL71] Belady L A and Lehman M M, Programming System Dynamics or the Metadynamics of Systems in
Maintenance and Growth, IBM Res. Rep. RC 3546, Sept. 1971, T] Watson Res. Crr., Yorktown His, NY, 10598

{BEL72] id., An Introduction to Program Growth Dynamics, in Statistical Computer Performance Evaluation, W
Freiburger (ed), Academic Press, New York, 1972, pp. 503 - 511

{BEL76]. id., A Model of Large Program Development, IBM Sys.]. vol. 15, no. 3, pp. 225 - 252

(BON77] Bondi H, The Lure of Completeness, The Encyclopedia of Ignorance, R Duncan and M Weston-Smith
(eds.), Pergamon Press, London, 1977, pp. S5 - 8

[BLUS9) Bium B L, Volume, Distance, and Productivity, J.of Sys. & Softw., vol. 10, no. 3, Oct. 1989, pp. 217 - 226

[DEM79] DeMillo R A, Lipton R J and Perlis A J, Social Processes and Proofs of Theorems and Programs, CACM,
vol. 22, no. S, May 1979, pp. 271 - 280

[DU69] DijkstraE W, A Constructive Approach io the Problem of Program Correctness, BIT, vol. 8, no. 3, 1969,
pp. 174 - 186

(DO72] id., The Humble Programmer, ACM Turing Award Lect., CACM, vol. 15, no. 10, Oct. 1972 pp. 859 - 866
[FET88] Fetzer, I.H, Program Verification: The Very Idea, CACM, vol. 32, no. 8, Sept. 1988, pp. 1048 - 1063

[GOD31] Godel K, Uber Formal Unentscheidbare Satze der Principia Mathematica und Verwandter Systeme,
Monatshefit fir Mathematik und Physik, vol. 38, pp. 173 - 198

[GRIT8] Gries D, Programming Methodology - A Collection of Articles by Members of IFIP WG2.3, Springer
Verlag, New York, 1978 .

[HOAG9] Hoare C A R, An Axiomatic Basis for Compuier Programming , CACM, vol. 12, no. 10, Oct, 1969, pp. 576
-583

[HOAT1) id, Proof of a Program FIND', CACM, vol. 14, no. 1, Jan. 1971

[JON80a] Jones C B, The Role of Formal Specifications in Sofiware Development, InfoTech State of the Art Conf. on
Life Cycle Management, Report se. 8, no. 7, 1980, inv. papers, pp. 117 - 133

(JONBOb] id., Software Development - A Rigorous Approach, Prentice - Hall Inc., New York,1980

[LEH69] Lehman M M, The Programming Process,IBM Res. Rep. RC 2722, IBM Res. Centre, Yorktown Heights,
NY 10594, Sept. 1969 and in [LEHS8S], pp. 39 - 84

(LEH74] id., Programs, Cities, Students - Limits to Growth, Imperial College. Inaugural Lecture Series, vol. 9, 1970
- 1974. Also [GRI78], pp. 42-69 and [LEHSS5], pp. 133 - 163

[LEH77] id., Human Thoughs and Action as an Ingredient of System Behaviour, The Encyclopedia of Ignorance, R
Duncan and M Wesion-Smith (eds.), Pergamon Press, London, 1977, pp. 347 - 354

(LEHB80] id., Programs, Life Cycles and Laws of Software Evolution, Proc. TEEE Special Issue on Software
Engineering, Sept. 1980, pp. 1060 - 1076

(LEHB4a] id., A Further Model of Coherent Programming Models, in [SPW84), Feb. 1984, pp. 27 -35

[LEH34b] Lehman M M, Stenning N V and Turski W M, (1984). Another Look at Software Design Methodology,
ICST DoC Res. Rep. 83/13, Junc 1983 and Software Engineering Notes, vol. 9, no 2, April 1984, pp. 38 - 53

(LEHBS] Lehman M M and Belady L A, Program Evolution - Processes of Software Change, Academic Press,
London, 1985

[LEH86] Lehman M M, Advanced Software Technology - Development and Introduction to Practice, Invited Paper,
Information Processing '86, Proc. IFIP Congress 1986, Dublin, September 1-5, Elsevier Science Publishers (BV),
{(North Holland), pp. 605 - 661

M. Lehman
Imperial College
9 of 28

-9.

[LEH87a] Lehman M M, Model Based Approach to IPSE Architecture and Design - The IST ISTAR Project as an
Instandiation, 1nv. Contr., Quart. Bul., IEEE Comp. Soc. Tech. Comm. on Database Eng., Sp. Iss. on Softw. Eng.
System and Database Regs., vol. 10, no. 1, 1987, pp.2- 13 : :

(LEHS7b] Lehman M M and Turski W M, Essential Properties of IPSEs, Software Engineering Notes, vol. 12, no. 1,
pp. 52-55

{(LEH87c] Lehman M M, Process Models, Process Programs, ijrmvﬂng Support - Invited Response To A Keynote
Address By Lee Osierweil, Proc. 9th Int. Conf. on Softw. Eng., Monterey, CA, 30 March - 2 Apr. 1987, [EEE Comp.
Soc. pub. no. 767, IEEE Ca. no. 87CH2432-3, pp. 14 - 16

(LEHS9] id., Uncertainty in Computer Application and its Control Through the Engineering of Software. in Software
Maintenance: Research and Practice vol. 1, no. 1, Sept. 1989, John Wiley & Sons Ltd, London and New York, pp. 3 -
pa)

[NAU69] Nauer P and Randell B, Software Engineering - Report on a Conference Sponsored by the NATO Science
Committee, Garmisch, 1968, Scientific Affairs Division, NATO, Brussels 39, 1969

[NEUM] Neumann P G (ed), Risks to the Public in Computers and Related Sysiems regular feature in every issue of
Software Engineering Notes, Special Interest Group on Software Engineering, ACM Press, ACM, NY,NY 10036

{OST87) Osterweil L, Software Processes are Software Too, Proc. 9th Int. Conf. on Softw. Eng., Monterey, CA, 30
March - 2 Apr. 1987, IEEE Comp. Soc. Pub. no. 767, IEEE Cat. no. 87CH2432-3,pp. 2- 13

[PARSS] Pamas D, Software Aspects of Sﬂdegk Defeu;u Systems, American Scientist, vol. 75, no. 3, Sept. - OcL
1985, pp. 432 - 440. Revised version in Comm. ACM. vol. 28, no. 12, Dec. 1985, pp. 1326 - 1335

[SIM69] Simon HA, The Sciences of the Artificigl, M.LT. Press, Cambridge, MA. 1969, 2nd ed. 1981

7[SP'W84] Pouts C (ed), Proceeding of the Software. Process. Workshop, Egham, Surrey, UK., Feb. 1984. [EEE, cat. no.
84CH2044-6 Comp. Soc., Washington D.C., order no. 587

[SPW86] Wileden J C and Dowson M (eds), SE Notes Special Issue on the 2nd International Workshop on the
Software Process and Software Environments, Coto de Caza, Cal., 27-29 March 1985, vol. 11, no. 4, Aug. 1986

[SPW87] Dowson M (ed), literation in the Software Process, Proceedings of the 3rd International Process Workshop,
[EEE Comp. Soc. Press, March 1987 - - ST T ’

[STESS] Stenning N V, Software Engineering: Presens and Future in The Corporate Database, State of the Art
Reports, D Iggulden (ed), se. 13, no. 3, Pergamon Infotech Lid, Maidenhead, England, 1985, pp. 83 - 93

[THO89] Thomas, M, Development Methods for Trusted Computer Systems, BCS Annual Lecture, in Formal Aspects
of Computing, vol. 1, no. 1, 1989, pp. 5 - 18

[TURS1] Turski W M, Specification as a Theory with Models in the Computer World and in the Real World, Infotech
State of the Art Report, se. 9, no. 6, 1981, pp 363 - 377 '

[TURS7] Turski and Maibaum T, The Specification of Compuier Programs, Addison Weslcy, London, 1987

[VAR79] Various correspondents, Comments on a Paper by De Millo, Lipton and Perlis, [DEM79], Comm. ACM,
vol. 22, no. 11, Nov. 1979, pp. 621 - 630

[VAR89] Various correspondents, Commenis on a Paper by Fetzer, [FET88], Comm. ACM, vol 32, no. 3, March
1989, pp. 287 - 290 and pp. 374 - 381

[ZURG7] Zurcher F W and Randell B, lierative Multi-Level Modelling - A Methodology for Computer System
Design, IBM Res. Rep. RC 1938, Nov. 1967, IBM Res. Centre, Yorktown Heights, NY 10594 and Information
Processing ‘67, Proc. IFIP Congr. 1968, Edinburgh, Aug. 1968, pp. D138 - 142

mmid53(papers]
17 November 1989

M. Lehman
Imperial College
10 of 28

VIEWGRAPH MATERIALS
FOR THE
M. LEHMAN PRESENTATION

§794

s o . - L - 1 - - ’ » .] » . v o
—
v
- T — Cam o e W : i I [o i

SOFTWARE, SYTEMS & APPLICATION UNCERTAINTY

&
ITS CONTROL THROUGH THE ENGINEERING OF SOFTWARE

SEL SOFTWARE ENGINEERING WORKSHOP
29 NOVEMBER1989

M M LEHMAN
LEHMAN SOFTWARE TECHNOLOGY ASSOCIATES LTD
60 ALBERT COURT
PRINCE CONSORT RD
LONDON SW7 2BH
&
DEPARTMENT OF COMPUTING

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY& MEDICINE

180 QUEEN'S GATE

LONDON SW7 2BZ

Nov 20, 1989 i mmid5 1 c{chans]-41

M. Lehman
Imperial College
11 of 28

Ll a '

PROGRAM CLASSIFICATION

« S-TYPE

« P-TYPE

. E-TYPE

COMPLETELY DEFINED BY SPECIFICATION

CRITERION OF SUCCESS IN IMPLEMENTATION
= CORRECTNESS RELATIVE TO SPECIFICATION

" = PROVABLY OR BY VIRTUE OF DERIVATION

SOLVES SPECIFIC PROBLEM
CRITERION OF SUCCESS IN IMPLEMENTATION

= SATISFACTORY (CORRECT?) SOLUTION
= 'SATISFACTORY' MUST BE DEFINED

ITS USE REALISES APPLICATION IN REAL WORLD

CRITERION OF SUCCESS IN IMPLEMENTATION

=> USER SATISFACTION

= ON EACH APPLICATION, THAT IS,
WHENEVER RESULTS ARE USED

NOTE - P & E TYPES MAY BE COMBINED INTO UNIFIED A - TYPE THIS
BISECTS PROGRAM CLASSES INTO THOSE THAT MUST BE CORRECT &
THOSE THAT MUST BE SATISFACTORY AT THE TIME WHEN APPLIED

Nov 20, 1989

mml45 1c{charts] 4

M. Lehman
Imperial College
12 of 28

THE NEED FOR CONTINUING CHANGE

« USER SATISFACTION CRITERION OF SUCCESS

« INITIAL CORRECTNESS NECESSARY TO ACHIEVE IT.
PROGRAM ELEMENTS SHOULD, THEREFORE, BE
CONSTRUCTED FROM S-TYPE ELEMENTS

« CORRECTNESS ALONE NOT SUFFICIENT

* RESULTS OF EXECUTION MUST BE ACCEPTABLE
WHEN APPLIED

* REAL WORLD DYNAMIC, UNDERGOING CONTINUING
CHANGE

» SOFTWARE IS A MODEL OF THAT WORLD WITH BUILT
IN, POSSIBLY IMPLICIT OR HIDDEN, ASSUMPTIONS

« RESULTS OF EXECUTION WILL REFLECT THESE

« VALIDITY OF SOME, EVEN IF INITIALLY JUSTIFIED,
MUST HAVE CHANGED SINCE BEING EMBEDDED

SYSTEM SHOULD UNDERGO CONTINUING CHANGE

Nov 20, 1989 mmld5c[charns]-6

M. Lehman
Imperial College
13 of 28

CONTINUING EVOLUTION

. PROGRAM DEVELOPMENT, INSTALLATION, USE
& EXOGENOUS CHANGE, MODIFY:

APPLICATION
- APPLICATION DOMAIN
- PERCEPTION OF BOTH
- UNDERSTANDING OF PROBLEM
- BASIS OF & JUSTIFICATION FOR ASSUMPTIONS
- AND OF POSSIBLE APPROACHES TO SOLUTION
- NEEDS, OPPORTUNITIES, AMBITIONS
- TECHNOLOGY

CRITERIA FOR PRODUCT ACCEPTABILITY ALSO
CHANGE

DRIVEN BY - FEEDBACK
- EXTERNAL CHANGE

EVOLUTION INTRINSIC TO COMPUTER APPLICATION,

SYSTEMS MUST BE CONTINUOUSLY EVOLVED TO
ADAPT THEM TO CHANGING APPLICATION DOMAIN
& TO CHANGING VIEWS OF THAT DOMAIN

SOFTWARE THE MEANS

« PROCESS MUST SUPPORT & CONTROL EVOLUTION

Nov 20, 1989 mmldSic[chans].7

M. Lehman
Imperial College
14 of 28

FIRST LAW OF PROGRAM EVOLUTION:-

E-TYPE PROGRAMS MUST BE CONTINUALLY CHANGED
ELSE THEY DECLINE IN USEFULNESS &

IN THE SATISFACTION THEY DELIVER

« UNIVERSAL EXPERIENCE AS ILLUSTRATED BY
LIFE CYCLE COSTS

- INITIAL DEVELOPMENT < 30%
- EVOLUTION (MAINTENANCE) > 70%

 MAINTENANCE TO PRESERVE

- USER SATISFACTION
- VALIDITY OF ASSUMPTION SET

« MAINTENANCE AS CONTINUING ADAPTATION

MAINTAINING MODEL RELATIONSHIP BETWEEN
REAL WORLD & SOFTWARE

Nov 20, 1989 mmid5{c{charts]-8

M. Lehman
Imperial College
15 of 28

SOFTWARE AS MODEL OF REAL WORLD

REAL WORLD SOFTWARE
« INDEPENDENT EXISTENCE « MODEL
« NATURAL LAWS - THEORIES
MODELS
« EFFECTIVELY UNBOUNDED « BOUNDED
. EFFECTIVELY CONTINUOUS « DISCRETE
« DYNAMIC « STATIC
« PHYSICAL « TEXTUAL
« CONCRETE . ABSTRACT
« AT MOST, INFLUENCED BY « PART OF
SOLUTION SYSTEM

IN DEVELOPING SOFTWARE MODEL THAT LARGELY
DETERMINE SYSTEM FUNCTIONAL CHARACTERISTICS
ASSUMPTIONS PLAY KEY ROLE

Nov 20, 1989 mmidS ic[chars]-9

M. Lehman
Imperial College

C —5 16 of 28

NATURE OF REAL WORLD

INDEPENDENT EXISTENCE THAT INCLUDES

CHANGING, POSSIBLY UNPREDICTABLE, ELEMENTS

EFFECTIVELY UNBOUNDED
(INFINITE)

EFFECTIVELY CONTINUOUS

DYNAMIC

TYPES, NUMBERS OF
= ATTRIBUTES

= STRUCTURES

= PROCESSES

- METRIC PROPERTIES

- ENTITIES

- STRUCTURES

- PROCESSES
- DATA

- ALWAYS CHANGING

NATURAL LAWS WHICH CAN BE APPROXIMATED BY

MODELS, PERHAPS CONTROLLED BUT NOT CHANGED

CONCRETE

PHYSICAL PROPERTIES

Nov 20, 1989

- CANBE OBSERVED
- EXPERIENCED
- MEASURED

- CONSTRAINTS
- LIMITS

mmid5 1¢[chars]-10

M. Lehman
Imperial College
17 of 28

NATURE OF SOFTWARE

« MODEL OF APPLICATION IN ITS DOMAIN
« MODEL OF SOLUTION IN ITS DOMAIN

« PART OF SOLUTION SYSTEM IN ITS DOMAIN

« STRICTLY BOUNDED - ATTRIBUTES
(FINITE) - STRUCTURES
- ALGORITHMS
- DATA REPRESENTATIONS

« DISCRETE - ENTITIES
- STRUCTURES
- PROCESSES
- DATA

« STATIC - HUMAN INTERVENTION FOR CHANGE

« BUILT IN THEORIES . REFLECT (MODEL)LAWS
- MATHEMATICAL PROPERTIES

« ABSTRACT - CAN ONLY BE UNDERSTOOD
. MATHEMATICAL MANIPULATION
FOR FORMALISED REPRESENTATIONS

« TEXTUAL - SEMANTICS

REPRESENTATION - SYNTACTIC CONSTRAINTS
- PRAGMATIC LIMITS, [F ANY?

IN DEVELOPING SYSTEM, ASSUMPTIONS PLAY KEY ROLE

Nov 20, 1989 meml4S1c{chans]-11

M. Lehman
Imperial- College
18 of 28

NEED FOR ASSUMPTIONS

FINITISATION

« DISCRETISATION

« ABSTRACTION

« ADOPTION OF THEORIES

- PHENOMENOLOGICAL
- COMPUTATIONAL

PHENOMENOLOGICAL

- COMPUTATIONAL

- SELECTION
- DISCARDING DETAIL

« DEVELOPMENT OF PROCEDURES

+ DATA

« DEVELOPMENT OF MODELS

+ ALGORITHMS

 RELATIONSHIPS

* etc, etc.

Nov 20, 1989

- VALUE
- RATE OF CHANGE
- DEPENDENCIES

- PHENOMENOLOGICAL
- OPERATIONAL

- MANAGERIAL

- COMPUTATIONAL

- PROCEDURAL

- SELECTION
- REALISATION

mmidSic{chans]-12

M. Lehman
Imperial College
19 of 28

ASSUMPTIONS

RELATE TO - REAL WORLD
- APPLICATION
- USERS
- COMPUTATIONAL PROCEDURES
- SOFTWARE & SYSTEM
- EMBEDDED DATA
- ASSOCIATED DATA BASE

VES’TIMATE ONE REAL-WORLD ASSUMPTION FOR
EVERY TEN LINES OR SO OF PROGRAM CODE

IN LARGE PROGRAM THERE MUST BE ASSUMPTIONS
OF QUESTIONABLE VALIDITY

MANY WILL BE IMPLICIT

SOONER OR LATER SOME, THEN INVALID OR MISSING,

ASSUMPTION OR DATA WILL CAUSE PROBLEM

BECAUSE OF - FREQUENCY OF EXECUTION
- SPEED OF EXECUTION
- TIGHTNESS OF USER COUPLING

- RESULTS OF EXECUTION MUST BE CORRECT WHEN
USED

- CHANGES CANNOT BE MADE INSTANTANEOUSLY

WHAT ARE IMPLICATIONS OF THESE FACTS OF LIFE?

Nov 20, 1989 mmi4Sic{chars)-13

M. Lehman
Imperial College
20 of 28

CONCEPTUAL IMPLICATIONS

ALL ASSUMPTIONS SHOULD BE MADE EXPLICIT
CAPTURED, RECORDED & MAINTAINED VALID

DATA (VALUE, RANGE, TYPES) MUST BE REVIEWED
AS APPROPRIATE, BEING TIME & EVENT DEPENDENT

FAILURE TO DO SO CREATES SOFTWARE POLLUTION
= UNCERTAINTY IN APPLICATION
= ASSOCIATED RISK

MAINTENANCE = USER SATISFACTION
= ASSUMPTION SET

NEED FOR ALERTNESS, REVIEW, UPDATING
= CONTINUING EVOLUTION

PROFESSIONAL RESPONSIBILITY TO SOCIETY
= CONTROL OF APPLICATIONS
= SPECIFICATION & DEVELOPMENT
= EVOLUTION
= MINIMISATION OF RISK OF
= ENCOUNTER WITH INVALID OR
INCOMPLETE ASSUMPTIONS
» CONSEQUENCES SHOULD IT OCCUR

INTRINSIC UNCERTAINTY IN E-TYPE SOFTWARE
& HENCE
IN COMPUTER APPLICATION IN REAL WORLD

Nov 20, 1989 mmid5ic(charts]-14

M. Lehman
Imperial College
21 of 28

AN UNCERTAINTY PRINCIPLE

THE OUTCOME, IN THE REAL WORLD, OF E-TYPE
SOFTWARE SYSTEM OPERATION IS INHERENTLY
UNCERTAIN WITH THE PRECISE AREA OF

UNCERTAINTY ALSO NOT KNOWABLE

Nov 20, 1989 mmlid5ic{chans]-15

M. Lehman
Imperial College
22 of 28

TYPES OF UNCERTAINTY

GODEL E-TYPE PROGRAM IS A MODEL OF A MODEL - :- OF

A MODEL OF AN APPLICATION IN REAL WORLD

- EACH MODEL PAIR CAN BE INTERPRETED AS A
THEORY & A MODEL OF THAT THEORY OR AS
A SPECIFICATION & ITS IMPLEMENTATION

- HENCE EVERY PROGRAM IS GODEL INCOMPLETE

- GODEL-TYPE APPLICATION UNCERTAINTY IS A
REFLECTION OF GODEL INCOMPLETENESS

HEISENBERG SYSTEM DEVELOPMENT, INSTALLATION & USE

CHANGES APPLICATION, SOLUTION, PERCEPTION
& UNDERSTANDING OF THESE

- THE MORE PRECISE KNOWLEDGE IS OF THE
APPLICATION & ITS SOLUTION THE LESS WILL
THE RESULTS OF EXECUTION SATISFY USER

- THE SOURCE OF NON-SATISFACTION, BEING A
FUNCTION OF PERCEPTION & UNDERSTANDING,
CANNOT BE PREDICTED

PRAGMATIC VALIDITY OF THE TOTALITY OF EMBEDDED
ASSUMPTIONS, EXPLICIT & IMPLICIT, CANNOT

BE KNOWN OR MAINTAINED RESPONSIVELY,

- RESULTS OF EXECUTION ARE, THEREFORE NOT
COMPLETELY PREDICTABLE

« THERE IS CLOSE RELATIONSHIP BETWEEN THE HEISENBERG &
PRAGMATIC TYPES OF UNCERTAINTY

Nov 20, 1989 mmi45 1c[charts]-16

M. Lehman
Imperial College
23 of 28

PRACTICAL IMPLICATIONS

» AWARENESS OF PROBLEM, AVOIDING IMPLICIT
ASSUMPTIONS

» ADOPTION & IMPLEMENTATION OF ASSUMPTIONS
MUST BE CONTROLLED, RECORDED & REVIEWED

« DITTO FOR DATA

» ANTICIPATE & IDENTIFY POTENTIAL CHANGES
& CHANGE SENSITIVE AREAS

+ SYSTEMATIC, PERIODIC, DETAILED SYSTEM WIDE
REVIEW BY JOINT USER/IMPLEMENTATION TEAMS

» DISCIPLINED, CONTROLLED, RECORDED
EVOLUTION (MAINTENANCE)

« TOTAL PROCESS MECHANISATION WITH
ACTIVE PROCESS SUPPORT & GUIDANCE

« EDUCATION & FAMILIARISATION OF SOCIETY

Nov 20, 1989 mml4S1c(charts}-17

M. Lehman
Imperial College
24 of 28

VIEWPOINT

* SOFTWARE AN ORGANISM NOT AN ARTIFACT

 GROWS & EVOLVES THROUGH FEEDBACK DRIVEN
PROCESS CONTROLLED BY HUMAN PERCEPTION

UNLIKE THE MECHANISTIC, SELF REGULATING PROCESSES
THAT DRIVE & CONTROL DEVELOPMENT & EVOLUTION OF
BIOLOGICAL ORGANISMS TO YIELD STATISTICAL ADAPTATION

« DEVELOPMENT/EVOLUTION PROCESS DETERMINES
PROGRAM CHARACTERISTICS AND QUALITY

PRODUCT

f
PROCESS

« PROCESS THE KEY TO SATISFACTORY EXPLOITATION
OF COMPUTER TECHNOLOGY

 DESIGN, SUPPORT, CONTROL RESPONSIBILITY OF
SOFTWARE ENGINEERS = PROCESS ENGINEERS

Nov 20, 1989 mmld5 1c[chans]-18

M. Lehman
Imperial College
25 of 28

SOFTWARE ENGINEER & PROGRAMMER

TERMS INCREASINGLY USED SYNONYMOUSLY

CONCEPTUALLY WRONG

COUNTER-PRODUCTIVE

ROLES ARE COMPLEMENTARY AND MUTUALLY
SUPPORTIVE

Nov 20, 1989 mmidSic(charts]-19

M. Lehman
Imperial College
26 of 28

PROGRAMMER

PRIMARY TASK: STEP BY STEP TRANSFORMATION OF
APPLICATION CONCEPT INTO SOLUTION SYSTEM

EACH PROCESS STEP TRANSFORMATION OF A

SPECIFICATION INTO CORRECT IMPLEMENTATION
CONCEPT VERBALISATION = REQUIREMENT
REQUIREMENT = SYSTEM SPECIFICATION
SPECIFICATION = EXECUTABLE REPRESENTATION
CHANGE NEEDED = IMPLEMENTATION

OTHER VITAL TASKS - SUPPORT FOR USER
- SYSTEM MAINTENANCE
- SYSTEM EVOLUTION
- VALIDATION
OF EVERYTHING

PROGRAMMING RELATES TO AND INCLUDES ALL
INVOLVEMENT IN ANY ASPECT OF DEVELOPMENT

OR EVOLUTION OF SPECIFIC
- SYSTEM ELEMENT(S)
or - PROGRAMS & SYSTEM(S)
or - FAMILIES OF SYSTEMS

PRODUCT ENGINEER

Nov 20. 1989 mml451c{chars}-20

M. Lehman
Imperial College
27 of 28

SOFTWARE ENGINEER

PRIMARY CONCERN: DESIGN, CONTROL, SUPPORT

DEVELOPMENT & EVOLUTION PROCESS

- PROCESS ITSELF
- METHODS
- TOOLS

SELECT, DEVELOP & REDUCE TO PRACTICE
METHODS
- TECHNIQUES
- PRACTICES
- PROCEDURES
- DIRECT TOOLS
- GENERAL SUPPORT

INTEGRATE & INSTALL METHODS, TOOLS & IPSEs
TO PROVIDE COHERENT PRODUCT, PROJECT &
PROCESS SUPPORT FOR AN ORGANISATION & ITS
ACTIVITIES OVER LIFE TIME OF EACH APPLICATION

SOFTWARE ENGINEER CONCERN - PROCESSES BY
WHICH SYSTEMS ARE DEVELOPED, PRODUCTS
CREATED & MAINTAINED SATISFACTORY

INVOLVEMENT WITH SPECIFIC SYSTEM

PROJECT DESIGN
- PROCESS DESIGN
- PLANNING
- DEVELOPMENT OF PROJECT-

SPECIFIC = METHODS
= TOOLS

- MANAGEMENT SUPPORT
- PROCESSES MANAGEMENT

PROCESS ENGINEER

Nov 20, 1989 mmidS lc{chars]-21

M. Lehman
Imperial College
28 of 28

TESTING IN A REUSE ENVIRONMENT
ISSUES AND APPROACHES

John C. Knight

Department of Computer Science
University of Virginia
Thomton Hall
Charlottesville, VA 22903

A Summary

Submitted To The Fourteenth Annual Software Engineering Workshop

Goddard Space Flight Center
Greenbelt, Maryland.

December 4, 1989

J.C. Knight
Univ. of VA
1of 18

il

Testing and Reuse John C. Knight

1. ISSUES

An economic advantage often claimed for reuse is that pars can be tested extensively
before insertion into a reuse library. The term certified part is sometimes used to describe parts
that have been tested prior to entry into a library (e.g., [11]) although certified is not a well
defined term. There is the vague expectation that building software from tested parts will
somehow make testing simpler or’less resource intensive, and that products will be of higher
quality [2, 6, 11]. For example, in [4] the potential productivity improvement through reuse is
given for the entire lifecycle. The various aspects of testing are listed, and a potential reduction
in cost resulting from reuse is shown for each.

Although using tested parts might offer some savings in testing, the situation is actually
much more complex than this simple notion implies. The reuse paradigm raises many new issues
in the area of testing, specifically:

(1) Part quality.
By definition, a part that is entered into a reuse library is being offered for use by others
with the assumption that the more times it is used the better. This means that the part has to
be prepared for every possible use if users are to have confidence that any phase of testing
can be reduced or eliminated [10].

(2) Distribution of parts.
To maximize economic benefit a reuse library will be distributed widely, and parts will
have to be built with portability in mind. They will also have to be tested so as to minimize
the difficulties arising either from changes in the support environment or from porting.

(3) Partadaption.
Adaption, i.e., changing a part before it is used, is likely to be extensive with modem
systematic reuse. Unfortunately, once a part is changed, the results of testing that took
place prior to placing the part in the library cannot, in general, be trusted unless great care is
exercised.

(4) Adaptable parts.

Adaption has been recognized as a necessity for generalized reuse 10 the extent that
provision for it is finding its way into programming languages. Generic program units are
present in Ada [12], for example, to support adaption and they present additional challenges
for testing. The parameters used with Ada generic units are not merely for numeric or
symbolic substitution. Subprograms can be used as parameters thereby allowing different
instantiations to function entirely differently. This raises the question of exactly how, or
even if, generic program units can be tested in any useful way [3].

(5) Part use.
A reusable part will be used in many different circumstances. Parts will contain
assumptions about their use that may be undocumented yet must be complied with for
correct operation. This indicates the need for increased attention being paid to integration
testing during system development.

(6) Part revision.
Parts will be enhanced over time to improve their performance in some way yet maintain
their existing interface. Systems built with such parts are then faced with a dilemma.
Incorporating the revised parts might produce useful performance improvements but the
resulting software will differ substantially from that which was originally built and tested.

(7 Custom software.
Although a new application might be built with parts from a reuse library, it will also

-1- J.C. Knight
Univ. of VA
20f 18

Testing and Reuse John C. Knight

inevitably include custom software. The question that then arises is how to take advantage
of the testing that has been performed on the parts to reduce the testing of the final system.
Somehow test cases have to target the custom software rather than the reusable parts.

In summary, the various phases of testing that occur in a traditional development
environment are still present but are changed in several ways when development is based on
reuse.

2. APPROACHES

Modifications of existing techniques can be employed to deal with many of the issues raised
above. Some issues, part revision for example, present problems that are similar to those which
arise during maintenance. However, topics such as testing adaptable parts are not addressed by
existing techniques. New approaches that address the problems of adaption and adaptable parts
are discussed here.

Two forms of adaption are considered, anticipated and unanticipated. Anticipated adaption
occurs when a user exploits facilities for change that were designed into the part, such as occurs
with an Ada generic part or a part dependent on symbolic parameters. Unanticipated adaption
occurs when a part is modified in a way that was not planned, usually using a text editor.

Anticipated Adaption

In many cases there are restrictions inherent in the design of a part to which any anticipated
adaption must adhere. In the simplest case, a symbolic constant might be used to define a
quantity such as the size of an array dimension. Adaption then consists of setting the symbolic
corstant prior to using the part, an action that was anticipated by the implementor of the part.
The design of the part, however, might impose certain restrictions such as the size being within
prescribed limits, or having some property such as being a power of two.

In a more general context, a functional restriction might be imposed on some piece of
supplied program text. A procedure parameter to an Ada generic unit, for example, might be
required to meet certain functional constraints inherent in the design of the generic unit.

In general, the checking that is required amounts to ensuring that an implementation (albeit
often a small one) meets a set of specifications. Checking an anticipated adaption is, therefore, a
special case of program verification in which the verification is of a source-to-source
transformation. The restrictions comrespond to the specifications and the adaption itself
corresponds to the implementation. It is important to note that the specifications in this case-do
not derive from, and are not related directly to, the original specifications for the application. The
specifications are a consequence of the design of the reusable part.

In a non-reuse setting, this verification will be performed by the author of a part. If the part
is placed into a reuse library, however, the checks must be performed by the user. Correct use
then relies on the restriction being documented correctly by the author, noticed by the user, and
checked correctly by the user. Achieving correct use on a regular basis scems unlikely given this
almost total reliance on human effort.

Specification languages like Anna [8] and Ada itself are not adequate to define the requircd
checking. Our approach to dealing with anticipated adaption is to incorporate machine-
processable statements of the required restrictions within the source text, and to check for
compliancé with restrictions after adaption but before traditional compilation. Such a notation

-2- J.C. Knight
Univ. of VA
Jof 18

Testing and Reuse John C. Knight

cau be thought of as an assertion mechanism that is intended to operate at compile time rather
than execution time.

This mechanism will not facilitate checking of restrictions such as required functionality.
Using the analogy with program verification once again, we deal with adaptions that cannot be
checked with a compile-time assertion mechanism using a testing system that again operates prior
to conventional compilation. The concept is to associate a set of test cases with a part that must
be executed satisfactorily by any code supplied as part of an adaption. The tests will be defined
by the author of the part and executed by the user of the part.

Unanticipated Adaption

Arbitrary changes made using an editor are likely to be required frequently in attempting to
reuse existing software. Such unanticipated adaption is far harder to deal with than anticipated
adaption because its effect on the software is unpredictable. There is still the desire, however, to
limit the amount of retesting that is needed since a part tailored specifically forreuse is likely to
have been subjected to extensive unit testing to ensure part quality.

The problem that has to be dealt with in this case is precisely that of conventional program
verification. Note, however, that the verification required is very different from the verification
required with anticipated adaption. A modified part is different from the original part and
obviously satisfies different specifications after unanticipated adaption.

Storing the specification of a part in machine-processable form and modifying the
specification along with the part with extensive automated checking and support is the best way
to deal with unanticipated adaption. Unfortunately, in general, this is not a practical approach to
the problem. However, a promising first approach to dealing with many of the issues, at least
partially, is the instrumentation of reusable parts with executable assertions [l, 8, 9]. In fact,
Anna [8] is described as a notation for specification although it does not have the completeness
characteristics of a rigorous approach such as VDM [5]. However, Anna does provide a rich
notation for writing executable assertions.

The role of instrumentation using assertions is to include design information with the part,
in particular to permit design assumptions to be documented in a machine-processable way. The
effects of arbitrary changes cannot be checked with any degree of certainty in this way.
However, there is some empirical evidence that executable assertions provide a useful degree of
error detection when properly installed [7].

Adaptable Parts

As discussed above, the problem with anticipated adaption is to ensure that certain
requirements imposed by the design of the part are met by the adaption. The problem of testing
adaptable parts is the complement of this. It amounts to ensuring that the adaptable part will
function correctly assuming that an adaption complies with the restrictions associated with design
of the part.

The various adaptions that arc provided with an adaptable part are similar in many ways (o
inputs to the part. From the point of view of correctness, sctting a symbolic parameter, say, has
some of the characteristics of reading an input of the same type as the parameter. The pan
should, in principle, operate correctly for every valid value of the parameter just as it should for
every valid value of an input.

-3- J.C. Knight
Univ. of VA
40f 18

Testing and Reuse John C. Knight

Adaptable parts cannot be cxecuted without adaption. Each has to be given a ‘‘value’’ in
order to use the part and the key question is whether the part will work correctly once these
values are installed.

Our approach to testing of adaptable parts is based on a scenario in which the adaptable part
is instantiated with specific values for the adaptions and then tested using somc conventional
approach to unit testing. Complete testing then consists of repeating this test process with
systematic settings of the various adaptions. We are defining new coverage measures [0 assess
the testing actually achieved. '

REFERENCES

{1] Andrews, D.M. and J.P. Benson, ‘‘An Automated Program Testing Methodology and Its
Implementation’’, Proceedings of the Fifth International Conference on Software
Engineering, San Diego, CA, March 1981,

[2] Bassett, P.G., ‘‘Frame-Based Software Engineering’’, /EEE Software, July, 1987.
{3] Dowson, M, personal communication.

(4] Horowitz, E and J.B. Munson, ‘‘An Expansive View of Reusable Software’’, I[EEE
Transactions on Software Engineering, Vol. SE-10, No. 5, September 1984.

(5] Jones, C.B., ‘‘Systematic Software Development Using VDM', Prentice Hall
International, 1986.

[6] Lenz, M., HA. Schmid, and P.F. Wolf, ‘‘Software Reuse Through Building Blocks'’, /[EEE
Software, July, 1987.

(71 Leveson, N.G., S.S. Cha, T.J. Shimeall, and J.C. Knight , *‘The Use Of Self Checks And
Voting "In Software Eror Detection: An’' Empirical Study" , submitted to /EEE
Transactions on Software Engineering.

{81 Luckham, D.C. and F.W. von Henke, ‘‘An Overview of Anna, a Specification Language
For Ada"’, IEEE Computer, March, 1985.

{9] Meyer, B., ‘““EIFFEL: Reusability and Reliability’’, in Sofrware Reuse: Emerging
Technology, Tracz, W, (editor), IEEE Computer Socicty Press, 1988.

(10] Russell, G., ‘‘Experiences Using A Reusable Data Structure Taxonomy’', Proccedings of
the Fifth Annual Joint Conference On Ada Technology and Washington Ada Svmposium,
April 1987.

[11] Tracz, W., ‘*Software Reuse: Motivators and Inhibitors'’, Proceedings of COMPCON 5’87,
1987.

(12] U.S. Department of Defense, Ada Joint Program Office, Reference Manual For The Ada
Programming Language, ANSI/MIL-STD-1815A, January, 1983.

-4- 1.C. Knight
Univ. of VA
5of 18

3

VIEWGRAPH MATERIALS
FOR THE
J. C. KNIGHT PRESENTATION

5794

. . PRI - “ . oW - o - Ca e W - ' - . .

LAY il

-~

8ousIog Jaindwo) jo Juswuedsg A _

VAN

WNLosU0) K11aoMpoag 240Mifog
pup

DIuISAIA Jo Knsaaatu)
20U212§ Lamdwo)) fo juauripda(g

W3y D uyof

SHHOVOUAddV ANV SHNSSI
LNHANOIIANA dSNHA V NI ONILSHL

Univ. of VA

J.C. Knight
6 of 18

8oU8I0S JaIndwoy) JO Juswliedaq

\

_

VAN
sue sy
paguaAed paiojie],
- uondepy '
a1EM1JOS .
uoneoddy
aI1eM1JOS
- wolsn)

HSNHY HLIM ININWdOTIAAA TAVMLAOS

A1eiqry
asnay

J.C. Knight
Univ. of VA

7 of 18

WNLLYOSNOD
T ALIALLINAO¥ b

FAVYMILIOS

{9IBM1JOS WOoISN)) YT, 1S9, 9N O MOH — a4vmifos wioisn)
(Areiqry sy, ug parepdp) s] wred oy, JI 1BYM - UOISIA3Y 14104
(Aradoag pasn) Sureg 1red ayfJ, S| - asn) 1vd

{d3uey) 10, paudiso(SMeJ 1ISOLOM UBD MO — SWDy 3]quidopy
{Paduey) JI YoM Hed SYJ, M — uondopy 1vd

(PIAON JT HIOM Med 9YL II'M — uounqrisiq 14od

JUysnoug poon) ued 9y, s - Anpong) 1vd

ASNHA HLIM SANSST ONLLSAL

Univ. of VA

J.C. Knight
8 of 18

P WNILYOSNOD %
TALIALLDNAOYd g

FUYMLIOS W

UONBDIJLISA [eUONIpEL], S WI[qQOI] =

3unipg oOH pV =
1adopaaa(q e Ag pauueld JON sd3uey) =
:uondepy pawdonuvu) @

UOINBIIJLISA [PUONIPEI], JO JUBLIBA S] W[QOI] =
sousuan ‘vonepidwo)) [eUONIPUO)) ‘sIUBISUO) FUNIOS =

1adopoaa(ued Ag pouueld seduey) =
Eo:%?« paodonuy @

NOLLAVAV LidVd

Univ. of VA

J.C. Knight
9 of 18

FEVYMILI0S

o WNILIOSNOD 7
ALIALLDNAOYd s

UONBIIJLIDA JO 958 [B109dS Sy WS[QOIJ MIIA @

SONUBWISG pauue] 9PIAOI] ISNJA] JojoureIed 9INPadol JLIOUIL)
OML JO 19MO{ ¢ ISNJA JoloweIe J[OqQUIAS =

o3uey pouueld UIYIAN I ISNJA J9IPWERIR] JI[OQUIAS =
so[dwexy @

(NOILLAVAV JALVdIDLINV

/

J.C. Knight
Univ. of VA

10 of 18

o NNILYOSNOD
ALIALLDNQOYL 5
FYVMLIOS /

uoneidwo)) a1o0fog ‘vondepy 421y ylod Alddy @

3unsoy, =

SUOIIOSSY 9[qeyoaYD 9] — Jooid,, ®
:sonbiuyos [, UONEIJIIOA @

Anpeuonoun,y eq 10N ‘uSisa 1ed WOIL] SIALI(UONEIJ3ds @

|

uoneoijoadg uonejuowaduy

/_ | NOLLAVAV JALVdIOLINY \

Univ. of VA

11 of 18

J.C. Knight

eousIos Jaindwo) Jo Juswedeq

\ VAN

,/ WALSAS ONIIDAHD

suondepy
parddng 198y

|

lonpyg
uondepy

SIS0 , IS, + SHIDLSUOY) + X[224MOY

uoday
1dwo) of, _
pfewely | uoday
159,) ﬁ
1933IY) -
uolassy |
NOLLdVAYV dALVdAIDLLNV
i (O X |

‘ued dqeidepy

\

J.C. Knight
Univ. of VA

12 of 18

\“\
WNILYOSNOD
ALIALLONQOYd .
FIAVYMILAOS 4 1/

Funsa], Ajjeroadsy S[I0MIY JZIWIUIA =

19 IV Suonedljadg pasiAdy ainsuy =

JUONEIJLIDA 210, S| WI[qol @
souey)) uoneodrjioadg e @

a3uey)) sjqewipaidun @

sonpg
eJ ueq
pansa Jlqe[resy

(NOILAVAV JALVdIOLINVNA \

Univ. of VA

J.C. Knight
13 of 18

.
WNILYOSNOD 2
ALIALLONQOY¥d 5

FIVYMIH0S

INAA “3-9 ‘suoneorjioadg jeurio — yoeorddy puodoes @
OHOM STUL [I'AA 19 MOH — uonsany A9y @

SOINSBIJA] 93RIA0) =

VNNV - suonesljioadg sjqeincoxy =
:;yoeoaddyy 1s11,] @

Juoneuaworduwy

uoneyuaweiduy

Juoneoijioadg uonednjadg

»

| NP VR

uod | uonvuiofsuviy | 1vg
paa1saq FTeTT T T T il J|qopivay

NOLLdVAV dALVdIOLINVN(

/

J.C. Knight
Univ. of VA
14 of 18

« WNILYOSNOD .
ALIALLOINGO¥d v
FYVMLIOS ,

as) £1245 10.] A[1991100) JIOA\ O SeH Med @

son1adoi ouOWNN] SNOLIBA =

01 ‘sonuion ‘ooedg ysey, =

2oedg sjqereAy ‘suoneiuasaiday ‘samnionng ‘sozig odA], =
;[onuo)) WA Loy 1, epv uf “89 ‘xopdwo)) ag ue)) syueisuo)) umnieg @

SOLIQUDL) ™

uoneqidwo)) [euonipuo)) =

SIUBISUO)) JN[OqUIAS SurNeg =
-o3endue Sunuweidold wosg sanijoe woddng asn @

1adoaaa(q ued Ag poauue|d sedueyd @

uondepy parednuy 104 paudisoq @

SLAVd A'14VIdVav |
\- % _ \

15 of 18

J.C. Knight
Univ. of VA

« NNILYOSNOD 7
ALIALLONGOY¥d ,

AYVMLIOS

SAINSEIPA] 938I9A0)) MIN do[ord(=
s101e10U90) Induy 1591, 9jqenng dopPad(g =

sidup,, sy s1ojowieled JLIOUIL) MIIA =

:yoeoiddy 1s11] @
suondepy [V UNM YoM ISNA Ueg djqeidepy @

woaqoig Y[, JO JieH 1PYO YL @ |

...... pou] &jppay syooq suyj

(D J1Udn) Y 1S3 N0 o MOH

SLAVd A'1dVIdvVAVv

J.C. Knight
Univ. of VA

16 of 18

\

80UdIDS 18INdwo) Jo Juswuedsqg _

VAN /

A1e1qI 9sndy

uondepy
- poredionueun)

peslie)

a

uondepy

NOILdVAV ANV ONILSHL
AAVINIANS

Univ. of VA

J.C. Knight
17 of 18

\

09UBI9S JaINdwo) jo Juswyedsq _

VAN

3unsay, 3O 1eduy
AU JO UN0JOY 9¥e], ION O] 35Ny JO S[OPOJ JTWIOUOIH SATEN

PaAULJa(SUOLIBION PUY S[00], ATRurunijaig
paurja sonbiuyoa |, Areutunjaig

soguarey)) weoyudiS IS Y|, sjuasald uondepy

asLIy O, siney 1o, sanmunioddp maN soAID -
10158 Sunsa], e AJITeSS09N 10N seo(-
auo(S| Sunsa], Aepp 9y, S19911V -

:9SNYY

SNOISN'TONOD

J.C. Knight
Univ. of VA

18 of 18

LY

Domain-Directed Reuse

Christine Braun
Rubén Prieto-Diaz
Contel Technology Center
15000 Conference Center Drive
Chantilly, VA 22021

Introduction

The Contel Technology Center’s Software Reuse Project was established to
introduce the practice of reuse throughcut the corporation, with the objective of
reduced cost and risk and improved quality in our software development efforts. We
believe that the maximum benefits are achieved when reuse focuses on a particular
application domain, making use of a standard design paradigm or architecture for that
domain. This paper will explain this concept and describe our work in implementing
such an approach.

Will reuse really make a difference?

It is currently popular for those considering the reuse problem to deplore the
unwillingness of software developers to actually practice reuse, and to assert that,
despite advances in supporting technology, little significant reuse occurs.

This is not true. Significant reuse (with significant savings) occurs:

+ every time a real-time system is built on top of an existing operating
system

+ every time an information management system includes a Commercial-off-
the-Shelf (COTS) DBMS

« every time a product vendor creates a new version of his product from
parts of the old system

» every time a compiler builder "retargets” his compiler rather than building a
new one from scratch

« every time a system designer draws on design knowlcdge from a previous
similar system

What makes these cases of reuse successful? How can we learn from these
successes and extend these benefits? Let us consider what they have in common.
First, each focuses on a particular appllcauon domain. Each reuses large entities
that perform domain-specific functions. Second, each makes assumptions about the

* system architecture. Systems can only make use of COTS operating systems,
DBMSs, etc., if they are structured according to ‘the model implemented by the COTS
product. Product vendors must keep major architectures intact to allow reuse of

C. Braun
. . Contel
Domain-Directed Reuse 10of 18

Tt

existing parts when making upgrades. Compiler front-ends are reused because the
overall compiler architecture is the same from one compiler to the next. Design is
constrained to fit these architectural assumptions. Finally, each is dependent on
properly generalized and well-defined standard interfaces. Many systems can use
the same operating system or DBMS because the interfaces of these products are
designed to accommodate a variety of needs and are well-understood and well-
documented. Standard interfaces between compiler front-ends and back-ends allow
reuse of these major components.

We believe that these successes can be extended by following the same model --
focusing on specific domains, developing standard architectures to direct and
constrain designs toward the use of common components, and specifying standard
interfaces to make reuse of these components possible. Contel’s reuse project is

taking such an approach, concentrating initially on the C31 domain.

How can domain knowledge be incorporated in a reuse system?

Reuse researchers generally classify approaches to reuse as either compositional or
generative. Compositional approaches support the bottom-up development of
systems from a library of available lower-level components. Much work has been
devoted to classification and retrieval technology, and to the development of retrieval
systems to support this process. These systems are useful but do not meet our
requirement for Domain-Directed Reuse.

Generative approaches are closer to what we are looking for. These are domain-
specific; they adopt a standard domain architecture model and standard interfaces for
the components. Their goal, however, is to automatically generate the new system
from an appropriate specification of its parameters. Such systems can be immensely
effective within particular narrow domains, but clearly their scop¢ is limited. It is not
realistic, at least with near-term technology, to imagine the completely automatic
generation of real-time defense systems.

What is possible today is an approach that combines the two. We can draw on the
domain analysis work tiiat forms that basis for the generative approach, developing a
standard domain architecture model and standard interfaces. We can then build an
interactive system, as a "superstructure” on top of a general-purpose retrieval
system like those that currently exist, that directs the designer through this
architecture in the gencrauon of the system. In effect, this is a generative approach
that uses the human engineer as the generator, directing and constraining his choices
to achieve the maximum reuse of available architecture components. Unlike the
automatic generation approach, it allows human judgement and choice at each step,
and recognizes the unlikelihood of developing the entre system | from available parts.
Its flexibility makes it applicable to most domains.

We envision a graphic user interface based on a representation of a standard domain
architecture. This might, for example, provide a hierarchical breakdown of the
architecture. The designer will initially be presented a top-level diagram showing the

C. Braun
Contel

Domain-Directed Reuse 20f 18

|

A

m
T

M

decomposition of the system into major subsystems. Pointing to the subsystem he
wishes to work on, he will be given a display of the next-level decomposition, and so
on. Atany level in this process, the entity selected by the designer may be
implemented by one or more components in the repository, and he will then step into
the component selection process supported by the repository. Alternatively, he may
ask for a further decomposition of the entity. For example, the designer of a C31
system may initially select "Man-Machine Interface” as the area he wishes to

design. The repository may have multiple Man-Machine Interfaces to offer the
designer -- e.g. a fill-in-the-blanks forms interface and a menu-and-mouse

interface. The user may select one of these or, deciding that neither meets his needs,
he may ask for a next-level decomposition of Man-Machine Interface. At that level,
he may decide to use a windowing package available in the repository. At each step,
the components offered will conform to a standard interface definition adopted for the
domain architecture model. Stepping through the hierarchy in this way directs the
overall structure of the design so that it makes the maximum reuse of available parts,
at the same time allowing the designer the discretion to substitute his own code
whenever appropriate.

What have we done so far?

Our approach to developing a domain-directed C3I reuse system has two threads --
domain analysis and retrieval system development. The domain analysis activity is
focused on analyzing Contel’s various ongoing C3I programs and identifying future
business and technical directions, to identify common structures, functions, and areas
of potential standardization. In this work, we interact heavily with the company’s C3
"domain experts". We have currently completed a top-level domain study surveying
the C31 area at Contel and setting forth our objectives for the more detailed domain
analysis. A full analysis, resulting in a generic system architecture, interface
definitions, and a component classification scheme, will be completed early next year.

Because C3I is only of the domains we wish to support, we will develop the C1
retrieval system by building a domain-specific superstructure on top of a general
baseline system. (In other words, we want to maximize reuse in building our reuse
systems!) We have currently completed an initial baseline retrieval system; a second
increment with a much improved user interface will be completed this year. Next year
we will design and prototype the domain-specific user interface, based on the results
of the domain analysis activity, and will work with the C3I business groups to develop

the necessary "building block" components to stock the repository. Contel’s C1
projects are already working with our initial system; they will adopt these new
products as they become available and provide feedback that allows us to continue to
improve our reuse capability.

C. Braun’

Domain-Directed Reuse Contel”
Jof 18

What benefits can be expected?

Perhaps the best example of a field in which such a domain-based reuse model is
already applied is compiler development. The existence of standard architectures and
interfaces has made reuse the accepted practice. One Ada compiler vendor estimated
that his organization had produced over 5 million lines of code in distinct compiler and
tool products with approximately 100 man-years of labor -- a productivity rate of
50,000 lines of code per man-year. This is 10-20 times the usual programmer
productivity estimate; clearly it was achieved because most of the software in later
products was reused from earlier ones. o

Such gains will not occur overnight in other fields; reuse via standard architectures
has been accepted practice in the compiler field since its infancy. However, we
believe that similar models are possible in other fields, and that comparable benefits
can be achieved. The compiler field does not need a directed design tool to encourage
and enforce use of standard architectures; no one would think of doing otherwise.
However, in other fields, the hardest job will be changing, disciplining, and
constraining ongoing design practices. The system we envision will do this easily
and conveniently, improving productivity from the start and thus overcoming user
resistance.

Domain-Directed Reuse C. Braun

Conte}
40of 18

" "o - [L L L [

e

. m

amn

mrmn

VIEWGRAPH MATERIALS
FOR THE
C. BRAUN PRESENTATION

5794

I

il il il T il

6861 19qUIdA0N 67
ze)(-0PLJ UqNY

uneag suy))

HSNHA dALOAIIA-NIVINOd

191Ud) ¢
ABojouyda |

C. Braun
Contel
Sof 18

W e U i il 1 T iil.] i FFm | ik i | W i ¥ . | LB } ,) iliil i il i itk i

A21ua7) K3ojouyda y 121u0)

SOLIDA 29 $59001(» m ™
SIUDWUONIAUT » @ g5
asnay - Ulw
‘qe-] SwISAS "qe] suRIsk§ A103R30qR"] K1ojyea0qey
Supoumg » I s} Jurrsouduy
UOISSTWISuBR1], -3S WSHIOMIIN -sAQ Juadnpajug aremyjos
L1eaqry
18UYR L
NuI)
£f3oouypray
2D :S9LI0JRIOQR] INOJ o

8861 u! papunoy .

SUOISIAIp 3y} 0} J10ddns
pajelad pue sa1dojouydd) padueape sapiaodd -- dnoad yoaeasaa ajerodaod .

H3.1LN3D ADOTONHO3L T31NOD 3HL

PBIU) ezg= = === =
ABojouyos| B==S====F

121u37) L80j0UYI3] 121U07)

"S}HUN ssauIsnq s [91uo0y) 0} Abojouyo9) ey} Jajsued)
pue ‘ABojouyoa) asnal adA10104d dojanap ‘asnal aiemyos
Buijioddns 0} sayoseoadde aAl}oayd Ul Yo1easal 19npuod)

1VOYD 103rodd 3sn3d

C. Braun
Conte]
7of 18

(TN] Ll Wil PRI] "R} 00 g il [T | [] ¥ ¥ } J [] i . Wil i 0T g

421u30) £3oj0utys3a | 121407

C. Braun
Contel
8 of 18

303foad Jarpaed UR Woaj IZpamouy udisop Swsnax -
duod e 3unpedaeyoa -

uoISI9A snoladad ay) 3uifyipowr Aq wd)sAs mau v Buipping -

SSINFQ 3uisn -

swrd)sAs unesado unsixa Juisn - -

JURYM - YedL YO -

"Aduowr 3utaes Ljeaa aae ajdoad pue ‘Aepo) jop e suaddey 3 ‘jeaa sy ‘sax -

(9dAY JO 101 B J1 S1 10 ‘[BOI ISMAI ST

¢3ON3H3441d V IMVIN ATTVIH 3SN3H T17IM

1BIUdD «
ABojouyosa

i
)
)

1|
il
[

-¢- 421u30) L3ojouyda | 191100

C. Braun
Contel
9 of 18

PIIUIUINDIOP-[[2M PUE POOISIIPUN-[[IM dIE SDeJIJUT -

SPI3U JO A)ILIBA B J)JBPOWILIOIIE 0) pAuisap ate sjuduodurod -

"S90RJI9JUI PIULjIp-[|oA pue pazijesdudd Ajrodoad uo yuspuadap st yoey .

21NJIYDIE J1j 0} PIUILIISUOD JJIB SIIOYD udisap -

"3JN}993IYdJE WII)SAS 9Y) Jnoqe suondunsse soyewt Yyoey

PIsNaI aJe SANuI dyads-ureuwrop ddae; -

‘urewiop uonedidde se[nonaed e uo SaSnd0j yoey .

ENOWIOD NI 3AVH S3SS300NS 3S3HL Od LVHM

it
]
1

"

(T (NI Wl (1IN "N [T N i N J e [1 ; | H -

421u37) L3ojouryoa J . 12110))

sjuduodurod 3say) Jo ISNAI IjeUl 0) SIIBJIUI pIepuels £J1d3ds

SuSISop UIeIISUOD pue JIAIIP 0} S2INPIYdJae paepue)s dopasp

surewop dy133ds uo sndoj

:[opou dures 3Y) SUIMO[[0] Aq PIPUI)IXI IQ ULD SISSIIINS ISAY],

3SiIN34dd

S (1 To)
ABojouyosa

10
1L

L ——f —
Mﬂ“

[[r
i
III!
)
W

il

C. Braun
Contel
10 of 18

421U37) K30joUYd2 | 121U07)

"ASNAY AALDAAIA-NIVINOA <= 04} 3y} dulquiod -- yoeosdde anQ

adoods ur pajiul] Jnq ‘SUTBWIOP MOLIRU UI JAIJIYYI AIdA <=
stajoweed s Jo uorpedY1ads wioay wa)sAs ajerduald Ajeonewoyne -

SIJBJId)Ul PUR 2INJINYDIE UIBWIOP pJIEpuUe)s uo paseq -

ISNIY IAYDLIUIL)

sjudwdaInbau joouwr j,uop Inq ‘nyosn <=
*339 ‘SAUIAYDIS UONBILJISSE[D ‘SuId)SAS [eadta)al £q pajioddns -
sjuduodurod [9A3] JIMO] JO AJIBIQH WO.JJ UOINI)SU0d dn-urojjoq -

asnay ppuomsoduto))

JO03TMONM NIVINOA ONISN

lajuan
ABojouyosa | eM

[l
|
i

I
)
QIMI!

C. Braun
Contel

11 of 18

.) L. i - i i | i 11 T] Wil i (T [I B)) I] |

-8 £21u3)) £ojouyoa | 12100

SUIBUIOP)SOUI J0J IIqEBIINS J|qIXdYy -
syded Jjqejrese wolj wd)sSAs aanud suidofaAdp jo pooyipdyIun sazuzdodda -
dajs yoes je d10yd pue JuowdSpn[uewny smoje -
J0JeI9ud3 3Y) sk JdduIdud uewny suisn yoeoidde dAneIdudg € <=
(31qepeAe
se) da)s yoed e sjuduoduiod Jo 310D SULIYYO ‘AINdNIYOIe Y} Yy3noay) JouISIp ay) spP3Ip -

*UIIJSAS
[8A311334 94} Jo do3 uo ,,2ampdngjstadns,, dIJIddds-urewiop ‘dAljoRIdIUI plIng

"WAJSAS [BAJLIJAI B Ul So[e)ed pue S)uduoduwiod I[qesnad AJyudpy .

*S30€J19jul pJEpUB)S pue 3.1n3dRIYdIe d11uagd doppasq .

34SN34H d3.103HIA-NIVINOA

[
i
()
b

"

C. Braun
Contel
12 of 18

L21u20) L30j0UY23 | 121U0))

S1SATeuy urewo(

sIsA[euy
urewoq

3pamouy 1adxy

swrsAg Sunsixyg

siuouodwo))
J[qesnoy SamIdMYIIY
unsixg JLIUD

JUSWUONAUY
uawdoaAa(g areMIjOS
paINU)) 9SNAY

i

walsAg
[ORUO)) pUe puBUIWO))

LININNOHIANT 3SN3H d3103HIA-NIVINOQA V

MBI === ===

.
R
=

ABojouyoe | m..ll.Wm.m ==

)) \ ' ' 1 ' \ 1 1

C. Braun

Contel

130f 18

-0l- : _ 421ua7) K3ojouyda | 121107

Jisuny yuduodurod ay) Ajddns

J9Yy3anj asoduroddp

]
C. Braun

Contel
14 of 18

Isn J10j Jjuduodurod e JOI]98

ued ‘synsaa uo gurpudddq .

"uonouny 3y} judwddul yey)
sjuduodur0d }93s 03 $$920.4d uo1)IIIs £103150dat ojul dIjs ued ‘[IAd] Aue Jy

uo os pue .
*uonISOduI0d3P [9AI[-IXIU SIS
‘Suljpurl 93eSSIJA "33 ‘WII)SASQNS PIIISIP SJIIPS o

“IeD
J0J *3°9 -- 3a4NJINIYIJB I1IUIZ [943]-d0) Jo uonejudsaadaa edrydeas sa3s J3s() o

AHOM SIHL S30d MOH

19U o
ABojouyosaj

mll
[Tl
||m||
i
il

m
||I!
!
)

INNI

Aaeaqry yusuodwo) —_=_=_

s100 B3

SIANJINIYIIB-qNS -

421u37) K3ojouyra | 12110,

iiiii
X

SO0

e
2 SKWda
samnn] BER
5
soydean) R -
SL0O . . o3 10883)014g
: SR € piop
saunnoy S
% 1a0ddng suopenjddy 3

snqdes
arewoq

adessay

FHNLOALIHOHY [0 JIHIN3IO V

19)Ud7) o=
ABojouydsa =

[kl

—~

()

)

15 of 18

C. Braun
Contel

INN|

421U30) £30j0UYI3 | 121U0))

L

‘::______:_:__:_______:____:_

d3SOdIN0D3A -- SNOLLONNA ONIMANVH 3D9VSSIn

— s e .

19Juan «
ABojouydse |

mmll
Ikl

C. Braun
Contel

16 of 18

121u3)) L3ojouya | ja1uo))

£1onsodaa %203s 03 ,,s)d0[q Suipying,, papaau 3y) doaaap o) 53d3foad [Yam ylom -
3ok jIajul dy1dads-urewop ay) ad£jojoad pue usdisep -

1A 9M “ABIK JXIN o

[[9A Se surewiop danyny xoj 31oddns Joj siseq -
J0'JIIUI PIAJUBLIO-MOpUIM -
JUIdYIS UOIJBILJISSB pajade) -

*SJSIX9 WIIISAS [BAILIJAI JUI[dSeq o

wSHRdxXd urewop,, [S Aueduiod yIim UOTOBIANUI JAISUNXD -

2.IN}0NYII. [9A3]-d o] [RljIUI pouLyop dAvy -

uorjezipIepue)s [enjudjod Jo SBIIR pUE ‘SUOIOUNJ ‘SAUNINI)S UoUNUO0d 3urfynuapt -
ASojouyda) Surdo[eAdp pue ‘SUOHIAIIP SSIUISN(‘SUIASAS [IUO)) JUILIND Suldpnis -

-3uro3uo s sisA[eue urewop [o

¢3M 3HV FHIHM

J9JUDY) o=
ABojouyosa | -

—
—
—
——
—
D—

[
il

(g
i)

—

C. Braun

Contel
17 of 18

»l- 437y K3ojouya | 121u07)

"0S O M SB | Spuey .Ino pjoy,, [Im
UIA)SAS PIUOISIAUI Y], "sadndead udisop 3utoduo uresuod pue Quydpsip 98ueyd 0) pasuspy -

a3ueyd 0) pIBY S,)] 'OPIM -
"ul Jing sJ1 -- Yoeoadde siy) 30.10jud 0) S[00) pIaU J uop A3y -

"19A3.10J STy} 3ulop U3dq ey djdoad sopdurod ¢JySrutaso swod juom Jy -

JouIesS dyjopam ue) .

iHSNHY ¢MOH -

adesaae Ansnpul sawp 0Z-0T A[43nod -- 18K SW 000°0S -
siedfi-uewi Q] -
s1onpoud 003 pue Japidurod Jounsip uj Ipod jo saulj UONIUI S -

:10pUdA Jo[IduI0d ® wI0a) SO1ISHIB)S .

¢03103dX3 39 NVO S1I43IN3g LVHM

J9juan
ABojouyoa |

Wi
|
()
i

C. Braun
18 of 18

Contel

USING REVERSE ENGINEERING AND HYPERTEXT
TO DOCUMENT AN Ada LANGUAGE SYSTEM

Presentation to

NASA Software Engineering Workshop

November 29, 1989

by Kent Thackrey

Planning Analysis Corporation
1010 N. Glebe Rd. Suite 890
Arlington, VA 22201
(703)-276-1250

K. Thackrey
Planning Analysis Corp.
10of 23

THE PROBLEM

The Planning Analysis Corporation Ada Group Enterprise (PACAGE)
provides a comprehensive set of Ada language services. One of our
DOD clients had a personnel/manpower information system (an
administrative system as opposed to a real-time or embedded system)
which was written in EDL language for the IBM Series 1 computer.
The client converted the system to Ada by translating instruction
by instruction. This means that there was no Ada system
engineering. This also means that there was no design or program
documentation for the converted system, other than the code
listings.

The new Ada system, on an IBM compatible PC, consisted of about

650 modules; a module is generally a function or procedure. There
were approximately 40,000 lines of Ada code; each carriage return
counting as a line. ‘ '

PACAGE was asked to produce the design and program documentation
in paper form. It was estimated that there would be about 2500
sheets of paper. Such documentation in paper form would have been
laborious to produce, difficult to access, and probably would not
be maintained.

THE SOLUTION

We recommended instead that PACAGE automate the documentation
process as much as possible and produce on-line documentation
instead of paper.

our process consisted of two stages:

1. Reverse engineering the Ada code to produce documentation,
using a partially automated process.

2. Developing an on-line documentation workbench using

hypertext.
Hypertext
There are several ways to access_information}' If we read a book
from front to back, for example, we access the information

sequentially. The drawback with this method is that sometimes we
have questions about the material that are answered later in the
text and it is difficult to track down answers and still maintain
continuity in what we are reading.

on-line information retrieval systems typically use a menu
structure to organize the information systematically and to allow
the user to retrieve it. To view information on a branch other
than the current branch of the tree structure, we have to work back
through the main menu. This also makes it difficult to maintain

K. Thackrey

Planning Analysis Corp.

2 0f 23

my |

oo

our train of thought if there is much information.

Hypertext organizes the information using a network systemn.
Typically, a hypertext system is developed hierarchally, like the
typical multi-layered menu system, but it allows the viewer to go
directly from any node to any other node on any branch. A
programmer investigating a module can use the documentation
workbench, for example, to

- Read the module description

- Examine its screen layouts

- Read the module description of a calling routine or called
routine

- View the source code

- Look up data elements in the data dictionary

Most of the transitions between these interdependent information
sources are made with single keystrokes, following pre-established
links. This allows us to access information following our normal
thought patterns.

Other hypertext features allow the viewer to retrace his steps or
return directly to the main menu, to mark a piece of documentation
for future reference (viewing, saving, or printing), and to search
the documentation for any string.

The Process

Figure 1 shows what information was included in our documentation
workbench and how it was linked and accessed.

A four step process was used to reverse engineer the code to create
the documentation:

1. A call tree was created by manually examining the code.
The call tree was then documented on-line using the Houdini
hypertext software. The call tree shows graphically which modules
call which other modules.

2. A code parsing program was written in PROLOG to examine
the code and store information about the modules in a database.
This information consisted of a list of which modules called and
were called by a given module, the calling statement format, a
description of the input and output parameters, the location of
spec and body code, record and screen information, and other data.

3. A shell generation program was written in PROLOG to take
the module information from the database and generate most of the
on-line documentation within the Houdini hypertext call tree
structure.

4. The source code was examined again manually to extract
information that the code parser could not. This included
information such as a purpose statement for each module and a

K. Thackrey
Planning Analysis Corp.
3of 23

[[] g i

T JHNOTA

1apJO uonejildwo) pue
181 abeyord 1daoxa ||e 0} 1Si] 9oualsyay dnaqeydly niyl
apo D 1}daoxa ||e 0} husw niy|
-§8800VY |euonippy

Planning Analysis Corp.

K. Thackrey
40of 23

3poH

\\\\\\ xﬂﬂﬂﬂAﬂdAﬂdd

\ T3pI0 UoNe[iaumos

Su 3d pl
- 934l |Ied
/suondiosaqg
alld s¥sig pd — a|INpOn
\ }Si| 9beyded
SINOAET U9315S

HON3IgGMHOM NOILVLNINWNOOA EpY

description of the global variables that were used.

This information was pulled together in an easy to use, on-line
workbench.

THE RESULTS

Approximately 2500 man hours were spent on this project. Of this,
25 percent was spent on analysis, 25 percent putting together the
hypertext structure, 30 percent pulling all of the text together,
and 20 percent on reviewing, testing, and implementing the
workbench.

The overall results of the project have been very positive:

- The on-line documentation was accepted as meeting the
requirements of the DOD client.

- There have been no requests to provide paper documentation
since the workbench was implemented.

- Users report that the system is easy to use and, at least
initially, there has been significant use.

In future versions we recommend that improvements be made to
facilitate maintenance. Our client has made significant changes
to the personnel/manpower information system without adequately
maintaining the documentation workbench. As a result, usage has
dropped recently. We recommend with future versions that:

- A list of called by and called from information be removed
from the module descriptions because it is difficult to
maintain and can be accessed through the call tree.

- The client receive more hypertext training so they are
proficient at making changes. Although not a lot of expertise
is required to maintain a hypertext system, there should be
some.

FUTURE DIRECTIONS - THE IDEAL DOCUMENTATION WORKBENCH

Based on our experiences with this documentation workbench, we have
developed some plans for future workbenches. The ideal
documentation workbench would serve two purposes:

- To facilitate SYSTEM MAINTENANCE
- To facilitate REUSE
We make the assumption that the workbench will be used by people

with average technical ability and with no prior knowledge of the
application.

Maintenance Documentation

K. Thackrey
Planning Analysis Corp.
50f 23

The purpose of the maintenance documentation included in the
workbench is to:

- Make it easy for designer/analysts to design code changes
properly.

- Make it easy for designer/analysts to assess the impact of
a change on other parts of the system.

- Make it easy for programmer/analysts to quickly locate and
fix bugs in the system.

Ideally, for new systems, this workbench will be developed as
a by-product of the system development process with minimal
additional effort. It will contain only that documentation that
is necessary for maintenance of the system, and not contain
documentation that is for development purposes only. Organizations
vary on what documentation they consider necessary for maintenance,
but to be included in the workbench it must be documentation that
will be maintained as the system is maintained. This means that
documentation changes should be a by-product of the normal
maintenance effort with minimal additional effort.

The purpose of the reuse documentation that we include in our
documentation workbench is to provide information in a form and
format that can be easily transported to a reuse library where:

= It will be available for other applications.

- Appropriate search mechanisms are available to effectively
locate and investigate modules.

- Appropriate metric gathering mechanisms are available to
track the usage of the modules.

- Code and documentation can easily be transported to new
applications.

All modules that are part of our new application will be documented
in our documentation workbench. A subset of these will be
identified during the system development process as candidates for
reuse and have additional documentation included for them in the
workbench. As with the maintenance documentation, most reuse

documentation should be generated as a by-product of the system
development process with minimal addition effort.

ample W ench
Based on this criteria for maintenance and reuse documentation, we

have designed a sample documentation workbench. Figure 2 shows how
this sample workbench would be structured and linked together.

K. Thackrey

Planning Analysis Corp.

6 of 23

¢ ENOTA

3p09H

MOj4
|0JjU09D

\ usaiog

§INoA®T O/ 19U10 SINOAET U9310%

SJNOAE] 11009y

™~

\ 1S1T] 9besSaN 10113

§3[qelIeA [€qoID pasn
pauljap

99l1] |leon

Ar——————
pajepdn
Ape———————

payipa

oITewioju] 35nayg 19410 / \

SUoIIATI959Q

\ a|npo

JWS9S88Yy 9p0H osnay 49pI0O
uone|idwo)

Bjeq 90UEW10}JI9d4 9SNdYy

uoljisodwooag
1080

HON3IGMHOM NOILVLNIWNDO0A ITdINVS

Planning Analysis Corp.

K. Thackrey
7 of 23

L anklh b il

Each box represents a separate hypertext structure where there will
be internal links between pieces of information in addition to the
external links shown in the chart.

Good hypertext systems have a visible structure to them. It would
be possible to establish many more links between the pieces of
information shown in the chart, but a 1logical structure is
important to avoid spaghetti hypertext, just like we avoid
spaghetti code in computer programs. This makes it easy for the
viewer to understand and for the technician to maintain. 1In this
case, we are using the call tree as the focal point for all of the
links.

This is a sample of the steps that would be involved in developing
this workbench for an MIS type system. These steps would normally
be embedded in the system development methodology and have been
extracted here to illustrate the process:

1. Develop data dictionary.
2. Develop CSCI decomposition chart in hypertext.
3. Develop screen layouts, report layouts, and other I/O layouts.
4. Develop screen control flow in hypertext;
establish links from screen control flow to screen layouts.
5. Develop call tree and module description shells in hypertext;
establish 1links from call tree to CSCI chart, module
description shells and to screen, report, and I/O layouts.

6. Develop reuse shells in hypertext for reuse candidates;
establish links from reuse shells to module descriptions.
7. Fill module description information and reuse description

information into the shells.

8. Develop global variable list, error message list, and package
list;
establish links from call tree to these and to the data
dictionary.

9. Establish compilation order;
establish link from compilation order to the call tree.

10. Develop code;
establish link from code to call tree.

11. During informal testing, capture code analysis data and enter
into reuse shell.

12. During stress testing, capture performance data and enter into
reuse shell.

13. At implementation, port hypertext documéntation for reusable
modules to reusable library.

The documentation workbench, of course, would be customized for
each organization. The steps necessary to create it would be
customized and mapped onto the organization's system development
methodology.

" THE BENEFITS

There are several benefits to developing a hypertext documentation
workbench similar to the sample here:

K. Thackrey

Planning Analysis Corp.

8 of 23

M| e ;i ;N mion -mion

ann

1y

s s t st and . A good hypertext
structure makes it easier to navigate through the information in
a logical manner. In addition, a workbench like the one in this
example forces a structure on the code that will make the code
easier to maintain. By linking the data dictionary element to the
module in the call tree where it is edited, we are requiring that
the element be edited in only one module. Thls is good programming
practice and the workbench structure will enforce it. Similarly,
we can force that a individual screen be generated in only one
place, a generic error message be displayed from only one place,
or a data element be updated from only one place. If we do this,
then we can use the call tree to track down every place that the
screen, error message, or data element update is generated.

Provides eagily accessible reuse documentation. All of the modules

that are candidates for reuse will be available for reuse on the
application being developed through the documentation workbench.
Later they will be available for reuse on other appllcatlons
through the reuse library. The hypertext links will make it easier
to examine all of the reuse documentation associated with a module.

Also, hypertext has a mark and save feature and a memory residence
feature. Conceivably, a programmer in a text editor could press
a hot key to activate the hypertext memory residence feature and
thereby enter the reuse library. After examining the reuse
documentation and selecting a code module, the programmer could use
the mark and save feature to save the selected piece of code to a
file and then import it into the text editor for use on the current
application.

Facilitates reuse analysis. The hypertext structure in the

documentation workbench provides some guidelines to use when
deciding if a code module is a reuse candidate. For example, if
the code module has links to a screen layout, a report layout, or
to a global variable, it probably is not a good candidate. If
there is a link from a data element to an edit routine, that
routine may not be a good candidate, but the routine it calls may
be. For example, a routine to validate a termination date probably
has some application-specific edit checks, but the generic date
routine it calls probably is a good reuse candidate.

Improves the development process. In addition to forcing a useful

structure on the code, we have also forced a structure on the
development process. For example, hypertext provides built-in
traceability. If it is not clear where to establish a link or if
there is no place to tie down a link, then we probably need to make
improvements to the system. Hypertext has been used, for example,
to link a system design to its requirements.

si intainab cumentation. Most of the
documentation in the workbench is:

1) Dynamic in the sense that when it is changed the workbench
is automatically updated. By linking to the actual source

K. Thackrey
Planning Analysis Corp.
9of 23

code, for example, a code change is automatically reflected
in the workbench.

or

2) Redline documentation in that the designer/analyst would
normally mark it to communicate to the programmer what changes
are to be made. It will take minimal effort to change an on-
line screen layout or report layout from a redlined copy.

or

3) Producible through an automated reverse engineering
process. It would be straightforward to write a code parser
to generate the call tree from the Ada code. The global
variable list and most of the module description information
could also be generated from a code parsing program. If
significant changes are made much of the revised documentation
could be generated automatically.

SUMMARY

Hypertext is deceptive in that the concept is very simple, but its
uses are many and its impact can be significant. Each hypertext
application tends to generate ideas for bigger and better uses the
next time. Some work is being done now using hypertext to develop
system documentation and reuse documentation, but our industry is
just getting its feet wet with hypertext compared to where it will
be in the not too distant future.

K. Thackrey
Planning Analysis Corp.
10 of 23

L L L] .

L. S

AN

VIEWGRAPH MATERIALS
FOR THE
K. THACKREY PRESENTATION

5794

- [I oo [T o L LI - t_BINRN "l

[1R}

O

uonei1odlon sisAjeuy Buluuejd
Aaoey] juay Aq

686l ‘6C 19qWIaAON

doysyJopn Buliesuibugy aieml}jos VSYN

0} uoljejuasald

WILSAS IDOVNONNYT BPY NV LNINWNDO0d
Ol 1X3143dAH ANV
HNIHIINIDNT ISHIATY DNISN

NOLLYHOJHOD) SISATYNY ONINNVd D

Planning Analysis Corp.

K. Thackrey
11°of 23

e ™ W T T 0. 1 i TE I I}))
NOLLYYOJ¥0D) SISATYNY DNINNV1J D .
S — e
S
R
o
>
£
o bOen
EELS
(= m.m
¥ o

paulejuiew aq jou pjnom A|qeqold -
SS9800k 0} }|NolIg -
90npoud 0} snolioge =
laded jo sjaays QOgZ alinbas pjnom uoljejuawnooqg -

Dd e uo walsAs adA} QIN -

(D01 000°0%) S38INPOW EPY PajULBWNIOPUN OGY -

wejqoid 8y |

HONJgGMHOM NOILVLNINWNDOQ epy

9|14 1IOSV ul 8q
ued ey} buiylAuy
:g|dwex3y

\\ ,
AN

wa)sAg Ja1ndwo)
§S800Y NUaN
:a|dwexy

NOLLYNO4¥0?) SISATYNY DNINNVI] D

joog
e JO sabed
:g|dwex3y

$S900VY
}x9)19dAH

$S900Y
jeoIyolelaly

1X3143dAH 40 NOILINI43d

$S900Y
jenuanbag

Planning Analysis Corp.

K. Thackrey
13 of 23

[] 1 | - 0o |- W S| Bk | | ki W . » |) ¥ » [

NOLLYHO4¥0)D) SISATYNY DNINNVI]

Jap1Q uonjejidwon pue
1517 abeyoed 1daoxs |je 0} 1SI7 9ouaIa)oy onleqeyd|y nayj

9poD 1daoxa |je 0} nusW NIy |

:$$800Y |euonIppy

\ ATeuonoig ereq 3poH

suondiIdsag piooay

9311 18D
_ B /suondiosaq
Salld SYSIQ pieH — a|npon
JSTT abeydEd

~

SINOAeT U99i0G

HON3IgGXMHOM NOILVLNINNDOQA epy

K. Thackrey

Planning Analysis Corp.

14 of 23

NOLLY¥O4¥O?) SISATYNY DNINNV1J

Syulj 818jdwod pue ojul Bululewas joeIIXS Ajjlenuepy ‘v
bojoid ur weisboid uonelsusb |jsyg ‘g

Bojoid ur weiboid Buisied apoo epy ‘2

SYuI| 1x8319dAH aziuebio O} IUIPNOH -
9po00 auiwexa Ajjenuepyy -
padojsnap 884} [|ed Ixa8)48dAH L

$S80014 9Y|

HON3gMHOM NOILYLNINNDOO0QA epy

V4

Planning Analysis Corp.

K. Thackrey
15 of 23

NOLLY¥O4¥0)) SISATYNY ONINNYd

Buluies] xay19dAH oiseg apinold -
Janeg syui aziuebio -

uolldiiosaq 9INPOW Wol4 ojuj 8di4] [|eD dAowaY -

9oUBUSJUIBN djelijioe4 0} sjuswaAoidw| papuswiwodsy -

Ajreniuj asn jueoyiubig -

jusi|n @oq o} a|qeydaddy -

laded Jo} sisenbay ON -
S}|nsay 9AlNISOd -

juawajdw| pue ‘ysa] ‘MaIndY %0S -

jayyebo) 1xal bullind %0€ -
ainyon.ng dojaaaq %Sae -
sisAleuy %Gg -

$INOH UBW 0052 -

s]|nsay

HONIGMHOM NOILLVLNIWNOOA &PV

Planning Analysis Corp.

K. Thackrey
16 of 23

NOLLY¥O4¥0?) SISATYNY ONINNVd

uoneolidde ay) jJo abpsimouy ou pue
Alijige jeoiluyos) abeusane ypum sjdoad -

JONIIANY

ASN3Y 9iellioe} of -
AONVNILNIVIN 8iell|ioe} O] -
350d4dNd

HONJgGXHdOM NOILVLNIWNNOOA 1v3dl

Fan
o/

Planning Analysis Corp.

K. Thackrey
17 of 23

» U 113 MLl b i ool [Wiwn w » - L w - ¥

NOLLY¥O4HOD) SISATVNY DNINNV1J D

Planning Analysis Corp.

K. Thackrey
18 of 23

110}}9 @oueUajUiRW [ew.iou
}O Jonpoid-Aq sabueyo uonejuswnoog -
110}}9 juswdojanap jewiou jo jonpoid-Ag -

(paulejuiew 8qg },UOM }eY] UOlBIUBWNDOP JO)
uoljeluswnoop Ajuo-juswdo|aAdp ulejuod JoN -

‘S3dHN1v3d

sbnqg X1} pue ajeo0| Ajise] -

sabueyo }jo joedwl ssasse Ajise] -

sabueyo ubisap Ajise] -
*350d4dNd

NOILVLNIWNOOA IONVNILNIVIN

| ¥R (L]

NOLLYHO4¥0?) SISKTYNY ONINNV1J

§§300.4d juawdo|snaqg }Jo }onpoid-Ag se pajelauar) -

$589890.d
Juswdojanaq Buling ajqesnay se paljijuap| SSINPON -

uoljejusawundog adueusjuley JO uoisus}x3y -

‘S3dN1Lv3d

suoljeoljddy maN
0} pajJodsueu] Ajise] uolejuawnoso(pue apon =

ajgqejleAy swsiueyosapy Buisaylen oua ajersdosddy -«
a|qejleAy swsiueyoa yoleag ajenndosddy =
suoljeolddy i1ayjQ 10} a|qe|ieAy «

Aleiqi] ashay e 0}
9|gejsodsued) Ajise3 aq 0} wio4 pue jewloq e ui 8q 0] -

‘3S0d4dNd

NOILVLNINnNOOAa 3Isn3y

AV 4

Planning Analysis Corp.

K. Thackrey

19 of 23

» e Wil W 111110 I [T . Wi Vil [oW ¥ ¥ [] A

NOLLYHO4¥0)) SISATYNY DONINNVIJ D
-—

g
o Gl
o :
mol 4 v,w...,
1013u09 ¥
5po
POO 7| _useiog g2
FEs
Y4
Ao

SINOA®T O/1 13410 SJnoAET U93Idg

STOAET TI0U3H \ JS1] obesSay 10113
~
pauyjep pailpa
uofewIojuy asnay 1aylo / \
suondiidsag
.\. 9INPON
JUSWS355Y 3P0 oSNoY T9pI0 uontsoduodsg
uolnjejidwo) 1059

NOLLY¥04¥07) SISATVNY DNINNV1J

suoldiiosaq asnay pue suoljdiiosaqg s|npon

9911 |[eD 0} SYUIT
‘1xa119dAH ul sejepipue) asnay 10} S|j9YS asnay

| sinoAe] O/ pue ‘yi1oday

‘Usaldg pue ey |DSD 0} SHUI SdINPOo auljaq pue
1xa)49dAH Ul [|]ays uondiiosag aINpo pue 8al]l |je) dojansg
S}NoABT] Usa10g 0} SHUIT {}xa149dAH Ul Moj4 [OJUOD UB3IDG

sinoAe] O/| 49410 ‘sjnoAeT] jioday ‘sinoAeT] usaldg

}xa140dAH ul uoyisodwooaq 1989

(waysAg adAl SIN 10} ajdwex3)
SSAD0Hd 1ININdOT3IAIA IHVMLHO0S

¢

Aleuonoiqg eieqg i

Planning Analysis Corp.

K. Thackrey
21 of 23

NOILY¥O4¥0D) SISATYNY ONINNVI4 D
R —

Aleiqi ajqeasnay 0} SS|NPO ajqesnay Joj
uoneuswnooqg 1x934adAH 1104 ‘uonejuswajdw] iy ‘€l

Planning Analysis Corp.

K. Thackrey
22 of 23

[IBYS asnay Ojul
eleg adueuw.ojiad ainyden ‘bunysa) ssaag buning gt

II9Ys asnay ojul
eleQq sisAjeuy apon aimden ‘Builsaj |ewltosu] Buung L

994] ||eD 01 s)uI] ‘aponH dojeaag ‘ol
99l1] ||eD 0})uil ‘18aplO uonejdwon

994] ||eD 0} AJeuoldiqg eleq pue asay} wodj syUIT
‘}s17] abe)oed ‘}si] abessay 10443 ‘}SIT] 9|qelIBA [BeqOo|D) '8

(walsAg adA) QI 404 sjdwex3)
(PBNUIUOD) SSIDO0Hd LNINJOTINIA FHYM LAOS

NOLLYYO4dY¥OD) SISATYNY DONINNVI]

uoljeluawnoo(ajgqeulejuie|y Ajiseg aiop -
AVligesoel] ul-}ing -
9IN}0NJ1S [RUONIPPY PO240H

S800.1d juswdojanag parosdw) -

siIsAjeuy asnay sajejljioe4 -

uoljelUBWND0(9SNaY 3jqISSa00Y Ajise] apIncld -

ulejule|N pue puej}siapuf 0} JaiSe] WaIsAg -

S1i43N3g

V(4

Planning Analysis Corp.

K. Thackrey
23 of 23

hl

|
T b o

1

Tmmmn

e

faki

e

SESSION 4 — TESTING AND ERROR ANALYSIS

R. W. Selby, University of California, Irvine

M. Bush, JPL
M. Hecht, SoHaR, Inc.

5794

Classification Tree Analysis Using the
Amadeus Measurement and Empirical
Analysis System

Richard W. Selby,
Greg James,
Kent Madsen,
Joan Mahoney,
Adam A. Porter, and
Douglas C. Schmidt
Department of Information and Computer Science!
University of California
Irvine, California 92717
(714) 856-6326
selby@ics.uci.edu

1This work was supported in part by the National Science Foundation under grant
CCR-8704311 with cooperation from the Defense Advanced Research Projects Agency
under Arpa order 6108, program code 7T10; National Aeronautics and Space Adminis-
tration under grant NSG-5123; National Science Foundation under grant DCR-8521398;
University of California under the MICRO program; Hughes Aircraft Company; and TRW.

R.W. Selby
U.C. Irvine
1 of 30

PEOW

Lol by

Abstract

Classification tree analysis is a metric-driven technique that categorizes software
components according to their likelihood of having user-specified properties such as
high error-proneness or high development cost. This paper outlines a method that
uses classification trees as metric integration mechanisms, enabling the synergistic
use of numerous metrics simultaneously. An extensive validation study has been
conducted using NASA project data and another is underway using Hughes project
data. This paper summarizes the empirical results from using classification trees
as predictors of high-risk software components in these environments. Classifica-
tion analysis, along with other empirically-based analysis techniques for large-scale
software, will be supported in the Amadeus measurement and empirical analysis
system.

R.W. Selby
U.C. Irvine
2 of 30

a8 m

e

AL

AL BN)

1 Introduction

The “80:20 rule” constitutes a fundamental principle in software engineering. The
80:20 rule states that approximately 20 percent of a software system is responsible
for 80 percent of its errors and costs. The impact of this rule is especially problem-
atic in large-scale software systems, where it is difficult to determine the complex
interrelationships among the large numbers of components. The identification of
the high-risk components, i.e. the troublesome 20 percent, provides several benefits
to developers:

o localizes components with low reliability;
o focuses testing efforts;
o focuses re-design and re-implementation efforts; and

o facilitates scheduling, among others.

2 Classification Trees

Classification trees provide an approach for identifying high-risk components [Boe81].
The trees use software metrics [Bas80] to classify components according to their like-
lihood of having certain high-risk properties. Classification trees enable developers
to orchestrate the use of several metrics, and hence, they serve as metric integration
frameworks. Example metrics that may be used in a classification tree are: source
lines, data bindings, cyclomatic complexity, data bindings per 100 source lines, and
number of data objects referenced. A hypothetical tree appears in Figure 1. Devel-
opers can select which high-risk properties interest them. For example, developers
may want to identify those components whose: (a) error rates are likely to be above
30 errors per 1000 source lines; (b) error rates are likely to be below 5 errors per
1000 source lines; (c) total error counts are likely to be above 10; (d) maintenance
costs are likely to require between 25 to 50 person-hours of effort; (e) maintenance
costs are likely to require between 0 to 10 person-hours of effort; or (f) error counts
of error type X are likely to be above 0 (e.g., X = interface, initialization, control).

Each of these properties define a “target class,” which is the set of components
likely to have that property. A classification tree would be generated to classify
components as to whether or not they are in each of these target classes. The
classification trees are automatically generated using data from previous releases
and projects. Classification tree generation is based on a recursive algorithm that
selects metrics that best differentiate between components that are and are not

R.W. Selby
U.C. Irvine
3 of 30

il T P i b

[T

Data
Bindings

0-3 4-5 6-10 > 10

Cyclomatic

Revisions C lexit System
omplexity Type
0-12 > 12 0-18 >18 Real-time _Nonreal-time
Source
Lines
0-150 > 150

"4 = Classified as likely to have errors of type X

"_" = Classified as unlikely to have errors of type X

Figure 1: Example (hypothetical) software metric classification tree. There is one
metric at each diamond-shaped decision node. Each decision outcome corresponds
to a range of possible metric values. Leaf nodes indicate whether or not an object
is likely to have some property, such as high error-proneness or errors in a certain
class. '

R.W. Selby
U.C. Irvine
4 of 30

within a target class [SP88]. A developer wishing to focus resources on high-payoff
areas might use several classification trees in support his analysis process. Figure 2
gives an overview of the generation and use of classification trees.

The metric-based classification tree approach has several benefits.

e Users can specify the target classes of components they want to identify.
o Classification trees are generated automatically using past data.
e The trees are extensible — new metrics can be added.

o The trees serve as metric integration frameworks — they use multiple metrics
simultaneously to identify a particular target class, and may incorporate any
metric from all four measurement abstractions: nominal, ordinal, interval, and
ratio.

o Classification trees prioritize data collection efforts and quantify diminishing
marginal returns.

o The tree generation algorithms are calibratable to new projects and environ-
ments using “training sets.”

o The tree generation algorithms are applicable to large-scale systems, as op-
posed to being limited to small-scale applications.

3 Empirically-Based Classification Paradigm

An overview of the classification paradigm appears in Figure 2. The paradigm has
been applied in two validation studies using data from NASA [SP88] and Hughes
[SP89]. The three central activities in the paradigm are: (i) data management
and calibration, (ii) classification tree generation, and (iii) analysis and feedback of
newly acquired information to the current project. Note that the process outlined
in Figure 2 is an iterative paradigm. The automated nature of the classification
tree approach allows classification trees to be easily built and evaluated at many
points in the lifecycle of an evolving software project, providing frequent feedback
concerning the state of the software product.

R.W. SeToy
U.C. Irvine
5 of 30

Wt

Ll L

[P TR

Data Management Classification Analysis
an Tree an
Calibration Generation Feedback

4 Corrective

Targeted
components

)
1
1
L
]
]
]
1
]
L)
1
I
1
1
1
1
1
]
]
]
)
1

1
!
1
1
1
]
1
]
1
]
]
1
1

Figure 2: Overview of classification tree approach.

R.W. Seiby
U.C. Irvine
6 of 30

3.1 Classification tree generation

This central activity focuses on the activities necessary to construct classification
trees and prepare for later analysis and feedback. During this phase the target classes
to be characterized by the trees are defined. Criteria are established to differentiate
between members and non-members of the target classes. For example, a target
class such as error-prone modules could be defined as those modules whose total
errors are in the upper 10 percent relative to historical data. A list of metrics to be
used as candidates for inclusion in the classification trees is passed to the historical
data retrieval process. A common default metric list is all metrics for which data is
available from previous releases and projects.

Importantly, one must determine the remedial actions to apply to those com-
ponents identified as likely to be members of the target class. For example, if a
developer wants to identify components likely to contain a particular type of error,
then he should prescribe the application of testing or analysis techniques that are
designed to detect errors of that type. Another example of a remedial plan is to
consider redesign or reimplementation of the components. It is important to develop
these plans early in the process rather than apply ad hoc decisions at a later stage.

Metric data from previous releases and projects as well as various calibration pa-
rameters are fed into the classification tree generation algorithms [SP88]. The tree
construction process develops characterizations of components within and outside
the target class based on measurable attributes of past components in those cate-
gories. Classification trees may incorporate metrics capturing component features
and interrelationships, as well as those capturing the process and environment in
which the components were constructed. Collection of the metrics used in the deci-
sion nodes of the classification trees should begin for the components in the current
project. This data is stored for future use and passed, along with the classification
trees, to the analysis and feedback activity.

3.2 Data management and calibration

Data management and calibration activities concentrate on the retention and ma-
nipulation of historical data as well as the tailoring of classification tree parameters
to the current development environment. The tree generation parameters, such as
the sensitivity of the tree termination criteria, need to be calibrated to a particu-
lar environment. For further discussion of generation parameters and examples of
how to calibrate them, see [SP88] and [SP89]. Classification trees are built based
on metric values for a group of previously developed components, which is called a
“training set.” Metric values for the training set, as well as those for the current
project, are retained in a persistent storage manager.

5

R.W. Selby
U.C. Irvine
7 of 30 -

3.3 Analysis and feedback

In this portion of the paradigm, the information resulting from the classification
tree application is leveraged by the development process. The metric data collected
for components in the current project is fed into the classification trees to identify
components likely to be in the target class. The remedial plans developed earlier
should now be applied to those targeted components. When the remedial plans
are being applied, insights may result regarding new target classes to identify and
further fine tuning of the generation parameters.

4. Validation Studies Using Classification Trees

One validation study has been conducted and another is underway using the clas-
sification tree approach. The goal of the studies was to determine the feasibility of
the approach and to analyze tree accuracy, complexity, and composition. The first
validation study we conducted was using 16 NASA projects (3000-112,000 lines)
[BZM*77] [CMP+82] [SEL82]. A total of 9600 classification trees was automatically
generated and evaluated based on several parameters. On the average, the trees
correctly classified 79.3 percent of the software modules according to whether or not
they were in the target classes (see Figure 3) [SP88]. In a second study, we have
applied the approach in a Hughes maintenance environment to identify fault-prone
and change-prone components in a large-scale system (>100,000 lines) [SP89]. The
use of project data from NASA and Hughes is intended to demonstrate the ap-
plicability of the method to large-scale projects. The classification tree generation
tools are environment independent and are calibrated to particular environments by
measurements of past releases and projects.

Basically, a classification tree is a predictive tool that integrates multiple metrics
to determine whether or not a module is likely to be in a user-specified “target
class.” The target classes examined were: cost-prone (NASA only), fault-prone
(both environments), and change-prone (Hughes only). Cost-prone was defined as
having development costs in the uppermost quartile (i.e., top 25 percent) relative
to past data; the definitions were analogous for fault-prone and change-prone. The
goal of a classification tree is to identify the modules on a future project that are
likely to be in a target class.

For complete descriptions of the studies and examples of the classification trees
generated, see [SP88] and [SP89]. The predictive accuracy of the trees in these
two environments is summarized in Figures 3 and 4. The purpose of this analysis
is not to compare or evaluate the environments in any way — the purpose is to
refine and enhance the classification tree technique and underlying concepts. The

R.W. Selby
U.C. Irvine
8 of 30

Target Number | Accuracy:
class of trees | overall (%)
N Mean | Std.
Cost-prone 4800 79.88 | 14.21
Fault-prone | 4800 78.75 | 21.23

All 9600 | 79.32 | 18.07

Figure 3: Classification tree accuracy using metric data from 16 NASA projects.

’ﬁrget Number | Accuracy: Accuracy: Accuracy:
class of trees | overall (%) | consistency (%) | completeness (%)
N |Mean | Std. [Mean | Std. | Mean | Std.
Change-prone 10 [89.54] 5.86] 53.12] 39.21 | 90.13 12.90
Fault-prone 10 80.76 | 14.31 | 81.16 25.91 | 75.68 12.61
All 20 85.15 | 11.56 | 67.14 35.40 ' 82.91 14.46.

Figure 4: Classification tree accuracy using metric data from the Hughes project.

R.W. Selby
U.C. lrvine
9 of 30

classification trees in both environments are relatively accurate cverall. Several
measures of accuracy are being examined, including

1. Overall accuracy. Percentage of future project modules correctly predicted
by the classification tree (i.e., target class modules correctly predicted as such
and non-target class modules correctly predicted as such). (Calculated in both
NASA and Hughes studies.)

2. Completeness. Percentage of target class modules in the future project that
were predicted as such by the classification tree. (Calculated in Hughes study
only.)

3. Consistency. Percentage of future project modules predicted as target class
modules by the classification tree that actually were target class modules.

(Calculated in Hughes study only.)

The overall accuracy of the classification tree depends on the target class being
identified (see Figures 3 and 4). The classification trees are more accurate for
identifying change-prone files than fault-prone files in the Hughes study (Figure
4). When accuracy is measured in terms of consistency and completeness, the
classification trees have 83 percent completeness and 67 percent consistency (Figure
4). Therefore, the trees tend to identify correctly most (83 percent) of the targeted
files, but they also raise several false alarms (33 percent of the files predicted to be
in the target class are not in the target class). Different environments may assign
different priorities to consistency and completeness accuracy measures. Note that
there is not necessarily a tradeoff between the two — it is possible for classification
trees to have both high consistency and high completeness. The trees targeting
change-prone files were 90 percent complete, and those targeting. fault-prone files
were 81 percent consistent (Figure 4) Based on the Hughes data (Figure 4), when
developers invest additional effort in the modules identified as likely to be fault-
prone, they have relatively high assurance that their resources will be well spent
(smce those trees have high consistency). When developers invest additional effort
in the files identified as likely to be change-prone, they have relatively high assurance
that most of the change-prone files have been identified (since those trees have high
completeness).

R.W. Selby
U.C. Irvine
10 of 30

-y LU - - - L_LLTI " -

5 Classification Tree Tools and the Amadeus Sys-
tem

Preliminary tool prototypes have been developed to automatically generate metric-
based classification trees. These tools embody the classification tree generation al-
gorithms and supporting data manipulation capabilities. These tools are prototypes
and should be considered only preliminary versions.

The classification tree tools will become part of the Amadeus system, which is
an automated measurement and empirical analysis system under development at
the University of California at Irvine. Amadeus supports empirically-based anal-
ysis techniques for use in the development and evolution of large-scale software.
Empirically-based techniques use measurements to describe, analyze, and control
software systems and their development processes. These modeling techniques lever-
age past experience and have many desirable properties, including being scalable to
large systems, integratable, and calibratable to new projects. The Amadeus sys-
tem provides capabilities for specifying empirical analyses, collecting the underlying
data, and feeding the results back into the development processes. Amadeus serves
as an extensible integration framework for empirically-based analysis techniques,
and hence, it is a complementary project to the TAME project at the University of
Maryland [BR88]. Amadeus is integrated with and leverages the components in the
Arcadia software environment architecture [TBC+88]. The conceptual architecture
of the Amadeus system appears in Figure 5.

6 Conclusions

This paper has presented an analysis of a software metric classification tree approach
to the problem of localizing fault-prone, cost-prone, and change-prone software com-
ponents. Classification trees have the benefit of being general structures that can
be automatically generated and evaluated and naturally decomposed into a set of
if-then rules. The metric evaluation heuristics can result in relatively rapid con-
struction of the trees, as they did in this analysis, but we do not imply that this is
the case for all heuristics and data sets. The empirical results presented in this study
are intended to provide the basis for analysis of classification tree generation and
evaluation — it is not implied that there is a direct extrapolation of these results to
other environments and data sets.

Classification trees enable developers to leverage off the use of multiple metrics.
In related metrics work (e.g., [BR88]), a variety of individual metric collection tools
are being developed, such as tools for data bindings metrics, cyclomatic complex-

R.W. Selby
U.C. Irvine
11 of 30

C bl

[T T

Intermediate language

requests directly . Active
generated from Pro-Active Server agents
processes and tools
] 1 oordi-
| message nation
'Dialog box Intermediate —___ interpreten| table
interactionsa l«—— language —> o
from humans (IL) messages ersistent Dynamic !
store of agent |
- historical inter- |
T Statically metric data actions !
| annotated) !
! process programs System '
! Languages |
[
L

Collection tools
Interconnectivity analyzers
Classification analyzers
Statistical tools
Visualization tools

mpirical analysis specifier
Process instrumenter
Empirical classification
generator
Metric taxonomy browser

Client’s Tool Kit Server’s Tool Kit
IL messages = Condition-action pairs. Conditions: event-based, object-based, or
time-based. Actions: processes or tools.
Server = Pro-active server interprets IL requests, delegates dynamic collection

to individual EC's, and coordinates analysis across multiple EC’s.
Server is PPL, UIMS, and OM independent.
EC = Evaluation component in active agent. EC is PPL, UIMS, and OM

dependent.

Figure 5: Conceptual architecture of the Amadeus measurement and empirical anal-
ysis system. - '

10

R.W. Selby
U.C. Irvine
12 of 30

[LU

[N) Al om [_BLLAS mnane

mn ! 1

LA

ity, source lines, change history, and error history. Classification trees provide a
mechanism for integrating the metric data resulting from these tools. An exten-
sive validation study has been conducted using classification trees and another is
underway.

Further research is underway to expand the scope of analysis and to refine the
underlying principles driving the results. The accuracy measures of completeness
and consistency are being applied to the NASA project data. The components that
are chronically misclassified are being characterized in order to guide the defini-
tion of new metrics. The use of project data from NASA and Hughes is intended
to demonstrate the applicability of the method to large-scale projects. The tree
generation tools are environment independent and are calibrated to particular en-
vironments by measurements of past releases and projects. Classification analysis,
along with other empirically-based analysis techniques for large-scale software, will
be supported in the Amadeus measurement and empirical analysis system.

References

[Bas80] V. R. Basili. Tutorial on Models and Metrics for Software Management
and Engineering. IEEE Computer Society, New York, 1980. IEEE Cat-
alog No. EHO-167-7.

[Boe8l] B. W. Boehm. Software Engineering Economics. Prentice-Hall, Engle-
wood Cliffs, NJ, 1981.

(BR8S] V. R. Basili and H. D. Rombach. The tame project: Towards
improvement-oriented software environments. [EEE Trans. Software
FEngr., SE-14(6):758-773, June 1988.

[BZM*77] V. R. Basili, M. V. Zelkowitz, F. E. McGarry, Jr. R. W. Reiter,
W. F. Truszkowski, and D. L. Weiss. The software engineering labo-
ratory. Technical Report SEL-77-001, Software Engineering Laboratory,
NASA/Goddard Space Flight Center, Greenbelt, MD, May 1977.

[CMP*82] D. N. Card, F. E. McGarry, J. Page, S. Eslinger, and V. R. Basili. The
software engineering laboratory. Technical Report SEL-81-104, Software
Engineering Laboratory, NASA/Goddard Space Flight Center, Green-
belt, MD, Feb. 1982.

[SEL82)] SEL. Annotated bibliography of software engineering laboratory
(sel)literature. Technical Report SEL-82-006, Software Engineering Lab-

11

R.W. Selby
U.C. Irvine
13 of 30

[SrRITTTRY]

T

[SP88]

[SP89)]

[TBC*88]

oratory, NASA/Goddard Space Flight Center, Greenbelt, MD, Nov.
1982.

R. W. Selby and A. A. Porter. Learning from examples: Generation and
evaluation of decision trees for software resource analysis. IEEE Trans.
Software Engr., 14(12):1743-1757, December 1988.

R. W. Selby and A. A. Porter. Software metric classification trees help
guide the maintenance of large-scale systems. In Proceedings of the Con-
ference on Software Maintenance, pages 116-123, Miami, FL, October
1989.

Richard N. Taylor, Frank C. Belz, Lori A. Clarke, Leon Osterweil,
Richard W. Selby, Jack C. Wileden, Alexander L. Wolf, and Michal
Young. Foundations for the Arcadia environment architecture. In Pro-
ceedings of ACM SIGSOFT ’88: Third Symposium on Software Devel-
opment Environments, pages 1-13, Boston, November 1988. Appeared
as Sigplan Notices 24(2) and Software Engineering Notes 13(5).

12

R.W. Selby
U.C. Irvine
14 of 30

I " X -

- E AR L}

VIEWGRAPH MATERIALS
FOR THE
R. W. SELBY PRESENTATION

5794

T

WH il

I owoarn

L4

Classification Tree Analysis Using the
Amadeus Measurement and Empirical
Analysis System

Richard Selby, Greg James
Kent Madsen, Joan Mahoney
Adam Porter, and Douglas Schmidt

Department of Computer Science
University of California
Irvine, California 92717

R.W. Selby
U.C. Irvine
15 of 30

i
i
H
i

Research Vision

e Long-term goal: Develop, evaluate, and inte-
grate empirically-based analysis techniques for cat-
alyzing the development and evolution of large-
scale software
—> Empirically-guided software development

e Research areas:

— Empirically-guided process programs

— Classification trees as integration mechanisms
for metrics

— Interconnectivity analysis methods

— Environment components to support measure-
ment and empirical analysis

R.W. Selby
U.C. Irvine
16 of 30

Why Empirically-Based Techniques?

e Scalable to large projects

e Calibratable to new environments

e Measurements are integratable

e Leverage previous experience

R.W. Selby
U.C. Irvine
17 of 30

The Amadeus System

The Arcadia measurement and empirical analysis
system

Integrated with and leverages the components of
the Arcadia software environment architecture

Amadeus provides an extensible integration frame-
work for empirically-based analysis techniques

Amadeus focuses on support for large-scale soft-
ware objects and processes

R.W. Selby
U.C. Irvine
18 of 30

Amadeus Supports Process Maturity
Levels 4 and 5: Managed and
Optimizing Processes (Humphrey)

Optimizing

e

Managed

=

Defined

Procass
definilion

Repeatabie

~

Imtial

management
cantrol

The five levels of process maturity.

ORIGINAL PAGE IS
OF POOR QUALITY

R.W. Selby
U.C. Irvine
19 of 30

Amadeus Major Functional Areas and
Example Capabilities

e Definition

— Empirical analysis specifier,
metric taxonomy browser

e Collection

— Event-based, object-based, time-based
mechanisms

e Analysis

— Classification tree generator, experimental
design builder, data analysis tools

e Feedback

— Empirical specification generator

R.W. Selby
U.C. Irvine
20 of 30

Amadeus System
Client/server separation
Client “toolkit”
Server “toolkit”
Intermediate language (IL)

Evaluation component (EC)

C, L\

R.W. Selby
U.C. Irvine
21 of 30

e

Amadeus Environment Components:

Conceptual_ Model

Intermediate language
requests directly
generated from

processes and tools

Dialog box
interactionss.
from humans

—

Intermediate |
<— language —>
(IL) messages

v
|
|
|
1
|
!
|

mpirical analysis specifier
Process instrumenter
Empirical classification
generator
Metric taxonomy browser

Statically
annotated
process programs

Client’s Tool Kit

IL messages =

Server

EC

Pro-Active Server

Active
agents

I Coord-
message || nation
jnterpreten| table
Persistent Dynamic
store of agent
historical inter-
metric data actions
A
System
Languages

Collection

Statistical

Server’s Tool Kit

Visualization tools

tools

Interconnectivity analyzers
Classification analyzers

tools

Condition-action pairs. Conditions: event-based, object-based, or
time-based. Actions: processes or tools.
= Pro-active server interprets IL requests, delegates dynamic collection

to individual EC's, and coordinates analysis across multiple EC's.

Server is PPL, UIMS, and OM independent.

dependent.

Evaluation component in active agent. EC is PPL, UIMS, and OM

R.W. Selby
U.C. Irvine
22 of 30

. -

L]

Metric-Based Classification Trees

~Motivated by the “80:20 rule”

80:20 rule is especially problematic in large-scale
systems

Goal is to identify the high-risk components, i.e.,
the ‘“troublesome 20 percent”

Classification trees use multiple metrics to iden-
tify these components

Classification trees use metrics to classify com-
ponents according to their likelihood of having
certain high-risk properties

R.W. Selby
U.C. Irvine
23 of 30

Example “Target Classes” to Identify

Components whose:
e Error rates are likely to be above 30 errors/KLOC
e Error rates are likely to be below 5 errors/KLOC
o Total error counts are likely to be above 10

e Maintenance costs are likely to require between
25 to 50 person-hours of effort

e Maintenance costs are likely to require between
0 to 10 person-hours of effort

e Error counts of error type X are likely to be above
0

R.W. Selby
U.C. Irvine
24 of 30

Example Hypothetical Classification
Tree

Data
Bindings

Cyclomatic
Complexity

0-12 > 12 0-18 > 18 Real-time Nonreal-time

Source
Lines

0-150 > 150

#4" = Classified as likely to have errors of type X

#_" = Classified as unlikely to have errors of type X

R.W. Selby
U.C. Irvine
25 of 30

Benefits of Classification Trees

User-specifiable target classes of components to
identify

Trees generated automatically using past data
Extensible trees — new metrics can be added

Trees serve as integration frameworks for multi-
ple metrics; may incorporate any metric from all
four measurement abstractions

Trees prioritize data collection efforts

Tree generation algorithms are calibratable to new
projects and environments

Algorithms applicable to large-scale systems

R.W. Selby
U.C. Irvine
26 of 30

Classification Tree

AcCcuracy
% Correct (mean)
97.1
88.9
709
60.4
A%ti?abb'fltigy all early all early
Module total total

class faults faults it offort
Std. Dev. 6.72 13.50 6.17 14.23

Average of 79.3% (sd = 18.1) modules correctly iden-
tified over all 9600 tree combinations

Better identification of costly modules (79.9%) vs.
error-prone modules (78.8%) [p <.0003]*

Better identification using all metrics (93.0%) vs. early
metrics (65.6%)

Early metrics better for identification of costly modules

R.W. Selby
U.C. Irvine
27 of 30

Preliminary Results

Mean Accuracy Completeness Consistency
100%
90.13

909 89.54
5 80.76 81.16
80% 75.68

70%

)

60% 53.12

50%
Mccigggl,e Chngs Flts Chngs Flts Chngs Fits
Std. Dev.5.86 14.31 12,90 12.61 39.21 25.91

e The classification trees are more accurate for identify-
ing change-prone files than fault-prone files.

e The classification trees have 83 percent completeness
and 67 percent consistency

e The trees targeting change-prone files were 90 percent
complete.

e The trees targeting fault-prone files were 81 percent
consistent.

R.W. Selby
U.C. Irvine
28 of 30

141003 YD

9fo1y

wany

11)[00) JOAIIG

wywp
m

129foxd

u2Lmn)

03 8331,
Ajddy

-o b aoeoaeae

syusauodwod

p21ire 'L

31)J00) I9AIOG

wep
JUIPW MIN

wiep
399 Surureyy,

ep
3¢ Sururey],

I{[003 JURI[D

<
i
coecaeohoeoe@geoae

(oeqposyg

stsAfeuy

oo eeswehbhsoeoasooe e o

uor129[10DH

. ™0
N —
(] sewpd 128 1w],
:
; Uonmysp ‘
1 seep yalreg
uoniuya(g

Abojopoylan uolneoyisse|dD

R.W. Selby
U.C. Irvine
29 of 30

OF POOR QUALITY

ORIGINAL PAGE IS

Conclusions

Identifying high-risk components (e.g., fault-prone)
benefits development personnel

Automatic generation of metric-based classifica-
tion trees has shown merit in two ‘“proof of con-
cept” studies | |

Further research on generation algorithms under-
way

Classification analysis will be supported in the
Amadeus measurement and empirical analysis sys-
tem

R.W. Selby
U.C. Irvine
30 of 30

ABSTRACT

The Jet Propulsion Laboratory's
Experience with Formal Inspections

Marilyn Bush and John Kelly
Jet Propulsion Laboratory

INTROD 0

This paper describes the introduction of software formal
inspections, known in the literature as Fagan Inspections, to the
Jet Propulsion Laboratory by the JPL Software Product Assurance
Section. It briefly describes the nature of the inspections,
indicates the way they altered JPL practice, characterizes their
present status at JPL, and evaluates their initial impact.

WH (8] RODUC SURANCE ﬁ ODUCED FO L INSPECTIONS

The Jet Propulsion Laboratory(JPL), a division of the
California Institute of Technology, is responsible to NASA for
conducting scientific investigations of the solar system using
automated spacecraft. Since the early 1980's JPL has been
concerned about the way it manages and develops software systems.
At that time, several JPL software systems were experiencing
difficulty, even as it was becoming evident that such systems would
become a larger part of NASA's future. By the mid 1980's software
has the focus of about 50% of JPL's work hours. By the year 2000,
some estimates show software efforts rising to as much as 80%.
Software problems are especially important to NASA because critical
flight software must be error free.

SPA soon learned that spending a little money to find and fix
defects early in the development life cycle saves a lot of money
later. One study, for example, estimates that $100 spent to find
and fix a defect during the requirements phase saves $10,000 to
find and fix the same defect in the operations phase.

In surveying what worked best in the most efficient software
operations around the country, it was determined that the most
cost-effective early defect detection technique was "Fagan
Inspections."

Formal Inspections were originated at IBM by Michael Fagan,
1976. Formal Inspections represent a defect detection, removal,
and correction verification process carried out during the pretest
phases of the development lifecycle. Formal Inspections were found

M. Bush
JPL
10of 17

vl

o

Lo

A

to be very effective at ensuring that documents and code are
logically correct, complete, clear, reliable and consistent.

Since 1976, Formal Inspections have spread widely throughout
IBM, then to other leading software producing organizations. The
Software Engineering Institute recommends the use of formal
inspections for enhancing developers' capability to consistently
produce high quality software. JPL's Software Product Assurance
Section has been aggressive in implementing the inspection process
on several projects.

WHAT FORMAL INSPECZIONS ARE

Formal Inspections are a seven-step process to find, fix, and
document defects early in the development cycle. The steps are
planning, overview, preparation, inspection meeting, third-hour,
rework, and follow-up. The inspection team consists of a trained
moderator and peers (3-6 people), with defined roles, representing
areas of the project affected by material being inspected. No
managers are present in the actual inspection meeting that last no
more than two hours. Inspections are carried out within designated
phases of the software life cycle. At JPL, the phases include
System Requirements, Subsystem Requirements, Functional Design,
Software Requirements, Architectural Design, Detailed Design,
Source Code, Test Plan, and Test Procedures.

Checklists of tailored questions are used to identify defects.
Statistics on the number of defects, types of defects, and time
expended on inspections are kept. Defects are categorized as MAJOR
(which must be fixed immediately) and MINOR (which are fixed at the
discretion of the project). Major defects, if they were allowed
to remain, would result in the system not operating as required.

HOW_ FORMAL INSPECTIONS WERE INTRODUCED AT JPL

SPA introduced the idea of Formal Inspections to JPL by both
training managers in the value of inspections, and at the same time
training developers in using inspections. We spent six months

developing two training courses: one for developers and one for
managers. The 12-hour developer course (which includ : moderator
training) was completed in February 1988. The two-hour manager

course was developed in June 1988. Moderators not only take the
12-hour developer course, but are observed during their first two
inspections. There are also monthly moderator meetings. As of
September 1989, thirteen "manager" and 20 "developer" classes have
been held, involving 175 managers and 288 technical staff, making
a total of 463 trained JPL people.

M. Bush
JPL
20f 17

PRI

We found after conducting 171 inspections that JPL's averages
per inspection were as follows:

Major Defects found 3.6
Minor Defects found 12.2
Total Staff hours 27.6
Pages inspected

(over the 2 hr meeting) 37.7

The number of participants involved in an inspection did not
appear to significantly increase the number of defects found (the
teams ranged in size from 3 to 6). This means that inspection
teams of 3 may be viable for code inspections. A significant
preliminary discovery was that code audits were not nearly as
effective at finding defects as code inspections. Even though code
inspections uncovered fewer defects than design inspections, the
audits found even fewer defects (one-third fewer).

All of the types of inspections tried indicate that Formal
Inspections are a cost effective means of improving quality early
in a project's life cycle. The average number of work hours needed
to find, fix and verify the correction of a defect (major and minor
combined) ranged from 1.4 to 1.8 hours.

M. Bush
JPL
3of 17

NTRT

bl 1A [N

[UL Mo

VIEWGRAPH MATERIALS
FOR THE
M. BUSH PRESENTATION

5794

W | [([| * I - LT, TR 2 W

e L RLAR ol

UMY 19Npoly SIvAYOg

6861 ‘6T NAAWIAAON

dOHSHIOM DNIIAINIONT TAVMILIAOS TVANNV HIVT THL
OL NOILVINASTId

ATIIA NHOC ANV HSNY NXTRIVIN

dr

SNOLLOAJSNI TVINIO
HIIM FONATNAIXE
SAJOLVIOSVT NOISTNdOdd LA
AHL

1-0668EN SOURMESY ONPold Muayog

1861 wysog o paseq,

*“ASVHd SNOILLVNZAJO AHL DNRINd
LOAJAd ANVS AHL X1d ANV ANIA OL 000°'01S

OL SANOJSAVYOD ASVHd SLINANFTIINGTA THL
DNRING LOAJAAA V XId ANV ANIJ OL LNAJS 001Se

"3TOA0 d4I'T ININJOTIATA
AHL NI ATIVAE SLOJAJId XId ANV NI OL ~“IVOD

LXHLNOO

T-0c00aN souwmesy onpoig Siwajjog

*I0JBIdpOUI pauyeI} v Aq pI| Ire suojldadsuy,e

"SIONIOM IJBN[BAJI O} [00] B S8 PIsn Iq 0} J0U IIe
suop}dadsu) °-suopydadsuy Supmp juasaid jou sy JUIMWITeUL e

*3onpoid JI0MA IY) U} ISIATIIUY PIJSIA B IABY pnoys

Supuedionred suofisag (dpdoad ss3f 10 9 03 payyury Lrensn)

pajdadsuy 3uyaq reprdjew o) £q pajodye 242 Y] Y Jo
sedre 3y} Supussazdax s199d £q INO pIpLIED X8 SUOdIdsule

*SMITAIX JUO)ISITFUx JOfeun
I0J SIININISQNS JOU X8 SUO}IIdsu] °I[24D] 9I8M}JOS
9Y3 Jo saseyd pajeudisop je N0 pafLILd I8 suofidadsuy,e

¢SNOLLOUASNI TVIIOA JdV LVHM

M. Bush
JPL

6 of 17

¢-0ce9aN souwmesy 19onpoid oIvAlog

‘sysA[eus puaI) I9)8[I0J JAIIS 0} Iseq BIVP [BII0ISIY
v se }day a18 ‘suopjoadsu} uo s13ujdud Aq papuadxd Jwy) IY)
pue ‘s)23J9p Jo s9dA) Iy} ‘S3IIYIP JO IIqUINU Y} U0 SI[IS|IBISe

-Amiqe SUpU-10119 WINUWIXBW JAJS 0} PUNOJ UIAQ SBY YIYM
a3e1 ® 8 Supeswn uopoadsuy ay) FJupmp pPIIIA0D S| [BLIIBNe

"Surpuy 109J9p BMUWIS
03} pue Y8} oY) JUPIP 0) PIsn 18 suoIsInb Jo 8ISANIYDe

*SINOY 0M} 0} pajjuy] axe sfupoom uopoIdsuye

"(GPIMD 20uUaIY HOING Y3 Uy PIGUISIP
se) sda31s Jo sop198 paquIosdxd v Uy N0 PILLILD I8 suopoadsuy,e

83101 Jydods pauBysse axe s1030adsuy pourelLe
(‘*INOD) ¢SNOILLOAJSNI TVINRIOA IV LVHM

h -

M. Bush
JPL

7 of 17

reuopdo
reuopndo

euopdo
reuonydQ

oyny
reuopndo
reuonydo

HONOYHL-YIVAM NOILLOJ3dSNI

SSOUIA[JIIYJO
Axojyepuely sAoxdury 03 PajoINOO SOIIN e
Axoyepuely 83X} peq 29npax 03 dn-Mmoqjode
A10jepuep $309J9P JO UOPINGIISIP I8(e
Axoyepusiy SISIIYO9Y0

+SIOLID PUYP 0) MOH,, I8Me
I0JBIIPON uopoadsuy 3} ,SIAHIP, OUMe
£A10yepuepy sajox yuedyopired 3puPade
A10jyepusiy Suyuyer) J03BIIPOW [BULIOS o
SAITYAdOAd
SHONOAHL-YIVA ANV

SNOILOJJSNI TVINIOJ NHFAMLAY SHONTAHJAIA

souRmMesy JONpold MEAYOS

i

M. Bush
JPL

‘8 of 17

SOURMSY 1ONPpOLJ SIBAYOE

*0Ld ‘SNV'Id '‘SCAVANVLS MAN “IVINVI S, HOLVIAdO ‘WAHLO
NOLLOAJSNI SNOLLONNA ¥ STANAZO0Ud LSAL Z1LI »
NOILLOAJISNI NV'1d LSAL 111 ¢

NOLLOAJSNI AAOD AJUANOS T 1 »

NOLLOAJASNI NDISAd AATIVLAC TI »

NOILOAJSNI NDISAd TVINLOALIHOAV OI »
NOLLOAJSNI SINTNIVINGTT TAVMLIOS 1Y »
NOILOAJSNI NDISAA TVNOILONNA 0N
SLNANTAINGTI NALSASENS NS

SINANTAINGTI WALSXAS XS

, SNOILLDJAJdSNI TVINIOA 40 SAdAL

PP SOTRMESY 1ONPOLJ SIBAYOE

's399fo1d £q 9sn 10§ 19Ju30 JueIMSUCO B dn 398 VIS

"I0OJBIIPON © 3q 03 pauyes) uosidd viS-1dr A19AF o

‘sgupeswmt 90Z-
‘suofjdadsu] (euriog Jo INBA Iy}
upeidxd 03 198euely Juy] pue 1feury 103(01d £I9A9 YA W VIS o
suopoadsug
[BULIO] JO IOJUIAUY Y3 ‘uefej [9BYIW sem 1oxeads auQ-

‘suopyoddsug
YA 20Uadxd I19Y) PIIunodu saapejulsaidoy Ansnpug
YoM uf 8861 Amp ‘90udIJu0) Lrenf aremyjog Jupacidury, o

"8861 YOIB| J0uys pauyen didoad 009 19A0-
‘suopdadsuy Isn 03 sxadojaasqg
pIauyer) pue suofjoadsu] Jo Infea Iy} IN0QE SIIFLUBH PIULIOJU] VIS o

1df LV GaONAOWLNI TJIAM
SNOILLOAJSNI TVINIOA MOH

M. Bush
JPL

10 of 17

souvInesy 19npold wwajjog

6861 UBULIINIV e
9861 ‘UOISIA|(Q SUIdISAS [8IIPI4 WA] ‘M0dIY [EIUYIIL,

++"%06 A0 AONVNIALNIVIN
FAALLOTMAOD NI NOLLONATA TIVIIAO FONAOAUd NVOe

«"%S8Z-F1 XTALVINIXOUddV
J0 ASVAUONI ALIALLONAON¥d TIVHIAO AONAO0Ud NVIe

« INTNJOTIAIA TAVALIOS
JO SASVHd X TIVA LV SLOAJAd TIV 40 %06-SL ANIJ NVOe

‘SYAHLO ANV ALNLLLSNI

ONINAANIONT TAVMIIOS FHL ‘SaV'1 1134 ‘Wdl LV SLIAIXA
Ol HNIGHOJIV ‘INTWATINI NVO dAdOTAAEd V ANGINHOAL
LNANIACUINI XALITVNO LNVIMOJWI LSON TATONIS THIL TAVe

*SNOLLOAJSNI TVINIOA

ATOXD FAI'T INFNJOTIATAd TAVMALIOS HH.L
JO SASVHd ATAVA NI SLOAJAA ONIANIA

.-

g-0c88aN oouwIMeTy 1MPpoid SISAYOE

"SNOLLOAJSNI S OL SNVId AAVIN JAVH SLOArodd FUON S o

"SNOILLOAdSNI TVINNOd dALdOdV JIAVH SLOANrodd 0T o

‘TTdH
 NJJH JAVH SNOLLDAJSNI 00€ OL ASOTO ‘8861 HOUVI AONIS o

SNLVLS 1dr

000°'STS
SANOH 82T

9
8¢t
¢l
1 4

‘suop}oadsuj QOE Y} I9A0 UOHIW G° LS PIAEs s8Y I [I8 Ul

soUwmMesY Jonpold HIvAYOog

ATIVA SLOFAJAd DONILOTHIAOO A
dIAVS AINON ALVNIXOUddV

‘QAANIIXH ANLL
HAJOTAATA ANV VdS TVLOL

‘SLNVJIOLLAVd
‘dIIAOD STOVd
‘GNNO4 SLOIAIA YONIN
‘NNOJ SLOIAJAAd VOIrviN

(NOILLDAJSNI ¥dd ADVIUAAYV)

dNI'T NOLLOY HH.L

e-ocoean SIOP 0T UBY) SN UM SUCHEOYSEEID By} SEPNIL 101D © | soummesy 1ompoly sINAYOS

839353 18310 Jo IFwjuddiagd

-h -
B 8 3 & 8 3 ~N o

g 3 B » o
EEEEEREERERER

%0°'S¢
%6°2E

neq
Lymqeaoway
OUBULIONSJ
Lymqeed
T19d Jo [9AY]

” LHmqeusuen
oum 2 souspdmo)
1ofepe [3900

Lyeoopouny

7/~

/7 % ssous3srdmon

/0 /7 /7 Lnrerd

suopydadsuy 121 = u
uopeIPIsse]) Aq 83333 JO uoPINqUISIA

aNNO4d SAJAL LOAJAd 4O HOVINIOTAL
SL'INSIAA

M. Bush
JPL

14 of 17

suopioadsuy 11 = w i
(Pussom puw wopyeredosd ‘asparsao)
MO U0} JO SOy
09

A A 1 i A 1

(wopyoadsuy 1ad)
punoy §399j9(d JO IqUMN SA LIOGH

SLINSHA

pumoy 39333 JO I3qumy

M. Bush
JPL

15of 17

L3

souRmesy Pupold sIBAyog

"HAILOHAAH LSOO HAV SNOILOJASNI JO SAJAL TIV e

"ANNOJA SLOAJAd A0 YAGWNNN AHL NO LOdJAAHA LNVOIJINDIS
V JAVH OL dViddV LON SI0d SLNVdIOLLIVd JO HAHINNN JHL e

(S80TIS$ O ¥8$ JO 1SOO V 1LV) SHNOH 8'I ANV V'L
NIAIALIA] STRNIVA LOA4dd V 40 NOLLOTYIO0D FHL AJAMIA
dNV ‘XId ‘ANId Ol SYNOH YHOM JO YIAGNNN ADOVIIAV THL e

"AONALSISNOO ANV

ALTTIEVIIAA ‘ALTTVNOLLONNA ‘ALNVIO ‘SSANALATINOD

‘SSANLOTMAO0D :SLOFAJAA 40 SANIOHIALVD HNIMOTIOL THL
ONIAONIYA ANV ODNIANIA LV AOO0D AHMIA AV SNOILLOAISNI e

SLINSIHA

SOUTININY IMPol] SINAYog

‘"NOLLOJAdSNI 33 LIV
ATILVIGEANNI SYOWIA YOV HNIXIA IAOVJNI OL AJdIN o

‘SUNOH S NVHI SSd'1
SI HANIL NOLLVIVdIUd JdI ONILATN NOILLOA4SNI ATNATHOSTA o

"ONLLSHL LINN JHOJdE 0O LOUAISNI e

"SSAD0Ud
NOLLOAdSNI dHL SI ALI'TIHISNOdSHY AJVARId ASOHM

LOUANMO¥d HOVA NO NOSYId ANIL-TINA IANO LSVAT LV JAVH o |

"SNOILOAJdSNI
JO JNIVA FHL LNOYV AAWIOJNI 34 OL JIIN SUADVNVN o

"SNOILLOJAdSNI
JOJd ANIL ALvNOaav AAIAOYd OL AAAN SLOArOUd o

"SNOILLOAJdSNI
TVINNEOA 'INJASSADINS V04 TVILNISSH SI ONINIVIL o

TINAVA'T SNOSSHT

THE ENHANCED CONDITION TABLE METHODOLOGY FOR VERIFICATION OF
FAULT TOLERANT AND OTHER CRITICAL SOFTWARE
M. Hecht, K.S. Tso, and S. Hochhauser

SoHaR Incorporated
8500 Wilshire, Suite 1027, Beverly Hills, CA 90211
(213) 855-2595

1 Background and Motivation

Over the past decade, research on software fault tolerance has gained in importance as
critical applications have become more software intensive. As work in fault tolerant
software moves from research to application, verification will emerge as a critical issue.
Fault tolerant systems have non-redundant components because the decision on a
reconfiguration action must be taken at one point. These non-redundant components must
be subject to an especially intensive verification. This paper and the accompanying
viewgraphs describe a test-based methodology developed for this purpose.

Usual structural testing techniques such as path or branch testing are inadequate for such
software, and other methods must be developed. The work described in this paper and
the accompanying viewgraphs investigated enhancement of a verification methodology
based on work performed by J. Goodenough and S. Gerhart based on condition tables
[GOOD75]. Their method required testing not only all paths through the software, but
all feasible combinations of conditions. The distinction between path testing and condition
table testing is that in the former, the completion criterion is that all feasible paths are
traversed at least once; in the latter, paths will be traversed many times with significantly
different data. As a result of multiple traversals, it is more likely that coding errors such
as incorrect conditions (e.g., [F A>B rather than if A > B), incorrect operations (e.g.,
A=B+C instead of A=B*C), or missing branches (e.g., check for a‘value not being zero
before dividing) will be detected.

The difficulties with the method is that it is excessively labor intensive. The effort to
develop condition tables and test cases can be more than an order of magnitude greater
than that required to develop the software undergoing test. Thus, it is impractical for full
scale software development projects. Our objective was to enhance the methodology so
that it applied to a realistic example: 1500 lines of code which comprise the kernel of a
distributed fault tolerant system being developed for advanced nuclear reactor control
under a contract to the Department of Energy. The enhancements that were developed
include:

- Automated tools to generate the condition table

- An analysis format called the Test Case Enhancement Analysis (TCEA) for
developing additional test cases which have functional, reliability, or safety

1
M. Hecht

SoHaR, Inc.
‘1 of 30

~ significance

- Implementation rules which simplify the generation of condition tables, test
cases, and the creation of a test environment

2 Methodology Description

The steps for developing an enhanced condition table are:

1. Develop a condition table based on the code

2. Develop additional test case specifications by resolving "don’t care" conditions
into test cases which relate to specific functional, safety, or reliability concerns

3. Define test cases which satisfy the specifications developed in the first two
steps

4. Create the test environment, run the tests and analyze the results.

Viewgraph 6 shows a simple code segment for managing a fault tolerant system consisting
of two nodes, designated nodel and node2. If the outputs of the two nodes agree, then
no further processing occurs. However, if there is disagreement between the nodes, then
the first node is checked. If the check function returns a value of not OK (ie., the node
has failed the check), then the fail_nodel variable is set to TRUE. If the check function
returns a value of OK (ie., the node has passed the check), then the second node is
checked. If the second node check value is OK, then a retry function is invoked.
However, if the check indicates a failure, then the fail_node2 variable is set to TRUE. If
either of the two nodes have failed, then a reconfiguration function is invoked.

The resultant condition table is shown on the same viewgraph. The predicates from the
4 conditions are shown in the left hand column. The feasible combination of these
predicates, called "rules", are shown in the 4 succeeding columns. The notation is as
follows: y: condition set true; n: condition set false; (y) condition is necessarily true
because of the state of other conditions; (n) condition is necessarily false; and -: irrelevant
or "Don’t Care". This format is an adaptation of the limited entry condition table first
proposed by King [KING69].

The "Don’t Care" conditions are the ones of concern in the condition table methodology.
Under the Goodenough and Gerhart approach, the right-most column of the table would
have to be decomposed into 8 (2%) additional rules for which test cases would have to be
written. The ECT approach instead requires that the analyst consider significant failure
modes of the module using a format called the Test Case Enhancement Analysis (TCEA)
shown in Viewgraph 7. The TCEA shows that only one additional case needs to be run:
that the two nodes should agree and that they should be failed. This rule uncovers a
significant flaw in the routine because such a case is not properly handled. Instead
ordering a reconfiguration, the implementation of this module results in no action at all.

2
M. Hecht

SoHaR, Inc.
2 of 30

) W8y

3 Tools Development

The tools development objective was addressed by the creation of two separate programs
called ECT and SEM. The ECT program performs the following operations:

1. Lexical analysis that assembles terminal symbols (e.g., carriage return/line
feed) and eliminates white space and comments

2. Syntactic analysis that parses C programs and detects grammatical errors
based on the ANSI C language standard

3. Generation of a condition tree

4. Generation of a condition table from the condition tree.

The condition table generated by the ECT program is syntactically and structurally correct
but contains many semantically infeasible rules. The second program, SEM, reduces the
condition table generated by ECT based on an input file which contains the semantics of
the C program.

Semantic information is input to the SEM program by means of an ASCII file using the
following notation:

& AND

| OR

! NOT

-> Implies that
Don’t Care

For the code segment shown in viewgraph 6, the semantics are

12 | 13 -> c4 (if the check on node 1 or node 2 is OK, then the node can not
have failed).

The ECT and SEM tools decompose multiple conditions into unary conditions and
generates tables based on the relationships of the multiple conditions. That is, a condition
based on two predicates, e.g., if (a<b) and (c<d), becomes two conditions using the ECT
and SEM programs; under the original approach, they would be regarded as a single
condition. A second enhancement is that case and while statements are handled by the
ECT and SEM programs whereas the original work dealt only with if-then-else constructs.
ECT and SEM were implemented in C on a Sun 280 computer running SUNOS (UNIX
4.2 BSD), release 3.5. Figures 1 and 2 shows the top level structure of these programs;

the parsing and lexical analysis portions were generated using the UNIX yacc and lex
programs.

M. Hecht
SoHaR, Inc.
3 of 30

hil

1]

reduce
ehminate duplicate
ows

5 2
.g =3 'g
§28 {858 [53
i 28 :
/ E :
go
i \
I
L 3
22 §
4 i
\ g
B22E [¥ a1 I
il —— il
—
______ b .
355. g i . %

Figure 1. ECT Program Top Level Structure

4

M. Hecht
SoHaR, Inc.
4 of 30

- winabaud xay 0} Iy
webad . .
ooeh o) indy 1
T]
8005 9
v o 0 sisheue ey
xp2
() b
v, \
.ﬁu_nu_hu_ﬁse_.. $8KU j0 Swau hos #5qe1 LOUOI Indino yzahu“_. sesied
sorpa: vos wdino o wesbs
oy 6p03
oanos 9
soYu NUBWOS . .
sinoexs y jexbeny . oyepod !
$OK] LOYIHUOD ndy . s _
souswes . unos guau ;

SoHaR, Inc.
5 of 30

M. Hecht

Figure 2. SEM Program top level structure

M

dl

W ||

4 Feasibility Experiment

The feasibility experiment determined whether the ECT was indeed practical for a
realistically sized critical software system by applying it to a fault tolerant distributed
reactor control system being developed under another contract at SoHaR. The system,
called the Extended Distributed Recovery Block, or EDRB, consists of approximately 2000
lines of ANSI standard C code; 1500 of which were sufficiently stable to warrant
verification. A description of the EDRB system may be found in [HECHB89].

Generation of condition tables was performed using the automated tools described above
for all stable portions of the EDRB. The accompanying viewgraphs show an excerpt of
code which is typical of the EDRB and the condition table generated by the ECT and
SEM tools described in the previous section. The rules are listed in a horizontal format
rather than the vertical format shown in the previous section because of the large number
of rules. 700 rules were generated for the 30 modules. No difficulties were experienced
in running the tools. The entire procedure took less than 1 hour, most of which was
related to file transfers.

The next step was generation of the test cases from the rules defined by the condition
table. Due to the 6-month schedule limitation of this Phase 1 SBIR research, only one of
the tasks was chosen for testing. This task, called HEARTBEAT, was one of the most
complicated in the EDRB, and is responsible for generating its own heartbeat, monitoring
that of its shadow, and deciding whether to synchronize with its shadow or signal the
system supervisor for a recovery action. A total of 109 test cases were developed for the
routine. Multiple test cases were developed for some rules in order to test special values
(i.e., values at or close to boundaries, discontinuities, etc.). Figure 3 shows two test cases
that were generated for Rule 40. They differ in that the frame counts in one case are 99
and 100 whereas in the second they are 100 and 103. These two different sets of values
test the limits of the behavior of the program in this branch. This approach exemplifies
the combination of structural testing with other forms of testing in order to provide
complete coverage. The fault found using the ECT which was not found using
conventional inspection-based methods was due to a second test case on the 66th rule in
the condition table. '

The third step was generation of additional test cases that reflect concerns on the function
of the module. A procedure was developed to generate such test cases and resulted in the
formulation of the Test Case Enhancement Analysis, or TCEA, an excerpt of which is
shown in Viewgraph 6. By using the TCEA, an additional several hundred rules were
developed to resolve "Don’t Cares" into y and n outcomes. However, the generation of
these enhanced test cases was simplified by the fact that they are readily derived from
existing test cases and their outcomes will be precisely identical to the existing test cases
from which they were derived.Execution of the test cases required (1) modification of the
source code, (2) a specially written test driver routine which reads in the test cases and
outputs the results, and (3) stubs to substitute for subroutines and functions invoked by the
unit under test. As will be discussed in the next chapter, creation of a unique test

6
M. Hecht

SoHaR, Inc.
6 of 30

-

398 puw pPaIse) U3oq siqeiiea - q/
ADS PIQRTIRA - 8/
ATuo peIsey e1quiivA - 3}/ .

I98 pU® DPEITE] Y0q e1qeIieA - q/

08 sqeTIRA -~ B/

Atuc peisey elqetawa - 3/ .

suRI] suRIy [suRll /vt weusuely 1suRIy isuRIy [BURIY 3/v1o HPUSURIY
oot 0ot - s/v12 daasueay 101 10t 1- s/v1d deasuviy
]] (] ae3isuce [}] o Jw3suom
) 0o 0 tuouzpues] 0 0 cuouzpuss
0 [} [fuomzpuss] [} o Zuowzpuss
1 1 0 8/¢> TuONMZpUSS 1 1 [+ | V44-] TuoNzZpues
° [} T s/12} TeIITUY o [1 LZAL] TeratuUy
0 0 o touls” peeu -] [0 coulis peeuy
0 0 0 zouks_pesu] 0 0 gouis peeu
T T 1 3/%2 Touis pesu 1 1 T /62 1ouds pesu
9 9 9 /D omyy 9 9 9 /v ouity
[0 T B/50°3/L0 __ oulsuy [1} T 8/503/E0 ouisuy
0’0 0‘o 0'0 (cpesdere’ r3unco_dwos) ¢3nq 0‘o 0’0 o‘o (gpesdere’ caunco dmos) ¢ gjnq
[] [\] 0‘0 (zpesde ®’z3unco_dwon)z3ng o‘o o‘o 0o‘0D (zpesdeie’ zaunos dwod) zing
t'o0t z'001 z'001 s/to (1pesdete’13unoo dwod) T3ng o’'tot 0‘cot o'cot B/t> (Tpesdele’13unos dwod) 1ing
00Y oot 66 3/T2'9/13i Junco Am tot 10T 00T 3/ro’s/1d4 unco Aw
soy0x/ s0l02/
andino Indano enywA uoyT3ITPUOd Indang andyno oniva uoTITPUO)
peAlesqo pe3sedx3 Indur erqeoyddy BWUN ®1qQUTIwA peAlesSqo peyoedxy andur eiqesyiddy BWEN SIqETITA
K FURIJus (JWATEIRID BTD A SURIt==m{)BATEORID BTD
- ()ouke peeu €10 - ()ouks"pesu ¢1d
- 1913tUT 210 - 1eI31UT 210
- Om=<junod dwod T1d - O=<3unos dwod 1D
- (Jouds pesu otd - (Jouks"pesu 010
- 1vI3juyT 6 - 13Uy 62
- Ow<UNCD duod o - Ow=<3lUnod duod 8
- UOHeasnI W38 rE) - UOlmuSNIvys Lo
- teyItuy 9 -~ Teyayut 92
X {)ouie pesu [4] A ()ouks pesu [1]
A SRTI<INVUINIESHIIL D A PETICINVUINIISNOIL ¥
7 S oudsut © A oufsuy [4]
u _0>3unoc> A 2D u 0>3unoy ke D
u (()oawo0oy *BTU=UOR) | 13 u -gwlu-uoﬂlclccl:OIV_ 19
sniwa uojIjpuod enteA UOTATPUOD
6867 ‘DT eunp ieeg 68T ‘0o sunp re3vg
IYOEH g tIoyny ‘oeeg UdeH ‘S :aoylny ‘Oseg
r oy IoU ese) ISe] T°0Y OU BEE®D I8P)
(1] tou TNy or iou sIny
o qy teutInoy o'qy tauyInoy

Figure 3. Two Test Cases for Rule 40

OF POOR QUALITY

ORIGINAL PAGE IS

M. Hecht

SoHaR, Inc.
7 of 30

A

environment for each task is a labor intensive process which could be eliminated by an
appropriate debugger capable of setting variables, tracing execution, and output results for
off-line analysis.

5 Results and Discussion
Success in Use of Automated Tools

The most significant result of this work was that the automated tools ECT and SEM have
eliminated a tedious and error-prone step in the verification process. Condition tables
were generated for all 13 tasks (total of 30 main and subroutines written in ANSI C) in
the EDRB node manager.

A related result is that automated tools provided a rapid unambiguous indication of
excessive complexity. For example, one task in the EDRB had 20 conditions and 1050
rules. This result was in and of itself sufficient motivation for recoding of the module.
Because these tasks were not contrived examples, it is reasonable to assume that the tools
used to generate these condition tables can be used for any code which has less than 15
conditions.

Traceability of Test Cases and Results

The ECT methodology provides a complete and traceable test program. Traceability of
all conditions in the code is provided through the automatically generated condition table.
Safety and reliability analyses are traceable to the TCEA. The ECT and TCEA together
form a test specification with unambiguous completion criteria. The test cases and results
are in turn traceable to the test specification. This traceability makes the ECT a
manageable process and facilitates IV&V, customer review, and regulatory agency review.

Fault Found Using the ECT Methodology

The ECT methodology uncovered a subtle fault in the HB routine synchronization
algorithm. A special values test in a feasible path created a state in which a "stale”
heartbeat count from the companion was greater than or equal to the local count. The
local node synchronized on this stale count. Analysis of the anomaly showed that although
the HB routine synchronizes on the frame number, it does not consider the age of the
heartbeat message. This age is measured by a variable called elapsed, which counts the
number of tenths of a frame that have elapsed since receipt of the most recent heartbeat.
When the HB routine requests the companion heartbeat count from the monitor task, it
also receives the elapsed value. If elapsed is greater than 2 ticks, then the program
specification defines the nodes as no longer being in synchronization. However, in this
case, a program variable called insync which indicates whether the nodes are in
synchronization, was set to true even though no synchronization had actually occurred.

Earlier work with the ECT methodology also found a subtle fault [TA187] in a fault
detection and recovery section of a smaller module. A possible explanation of the nature
of faults found by the methodology is that more obvious coding errors will have been

8

M. Hecht
SoHaR, Inc.
8 of 30

detected during development and testing by the original software implementer. Thus, only
errors in infrequently exercised paths with unusual values, i.e., "subtle" errors, will remain.
However, previous research on data from the JPL Deep Space Network [MCCAS87] has
shown that such errors account for a disproportionate number of system failures. The
structural aspect of the ECT methodology considers all code without regard to the
functional aspects of the program. Because functionally oriented testing by the original
developers will have occurred before the start of verification, only the subtle errors will
remain.

Implementation Practices for Testability

A significant result of this research is the importance of designing and implementation of
code to ensure testability. The following rules were found to be effective:

1. No more than 12 conditions per module: One measure of complexity of a module
is the number of branches formed by if, while, else, and related conditions. As
modules become more complex, they become more difficult to verify using either
manual or automated approaches. Although the automated portions of the ECT
methodology can handle modules of more than 20 conditions, they are difficult to
understand and have an excessively large number of rules.

2. Minimize setting of variable after using: If the same variable is set and used several
times for each execution or iteration of the unit under test, then it is difficult to
conclusively evaluate its success because intermediate values are obliterated before
the results are output. Following this rule allows the return values of funcrion to
be written to a record without an undue number of changes to the code and is
particularly important for operating system calls and other black box modules. This
method also reduces unintended interaction effects.

3. Use parameters for subroutine calls, minimize use of global variables and pass
subroutine arguments by value: The principal advantage of information hiding for
the purpose of the ECT is that it makes writing of a test driver easier and facilitates
the creation of test cases. The other advantages of this rule are well known and
would apply in general to high quality software.

4, List parameters in the following order: (1) input parameters, (2) inputfoutput
parameters, and output parameters: Although the input and output parameters must
be separated in Ada, other languages such as C and FORTRAN, do not require
explicit separation. The primary motivation for this rule is to facilitate testing.
However, it also reduces the probability of inadvertently switching arguments or
misunderstanding.

Following these rules reduced the number of changes by more than 60% in the modules
tested. This reduction results in a more credible verification and also reduces the test
effort.

M. Hecht
SoHaR, Inc.
9 of 30

]

Test Case Generation

The approach to test case generation in this phase of the research was to manually define
the state of input values so that the path for each case was known a priori. The usual
approach is to instrument the code and vary the input (many path testing programs vary
the input randomly) within predefined ranges in the hopes of traversing most branches.
When the automated testing is concluded, manual test cases are created only for the
untraversed paths. The benefit of the a priori approach are:

1. A large reduction in the number of test cases that must be generated, stored, and
evaluated

2. Explicit traceability of each test case to a rule, special values, and path

3. Easy creation of enhanced test cases generated from special values analysis and the

Test Case Enhancement Analysis.

Test cases examine the states of internal variables as well as the input and output. Thus,
testing requires the manipulation of internal variables, dynamically changing parameters,
and other intrusive actions. The test environment can be entirely custom developed or can
be built from existing tools within the operating system. In the QNX [QUANS8] operating
system under which the EDRB runs, a test environment was specially written to read in
test data, output results, and set values of internal variables and dummy variables
substituted for operating system functions.

Different considerations would apply in more sophisticated software development
environments. For example, the dbx tool in many implementations of UNIX 4.2 can set
all internal variables and print out all output variables without the need for a driver
routine; the test input can be read in through a script file and the output can be directed
to the appropriate output file. Thus, the first and second principles would no longer apply.
dbx also has some capabilities to control interaction with the operating system thereby
reducing the need to replace calls to the operating system with test data variables.

Promising Areas for Additional Tools Development

The accompanying viewgraphs include an estimation the time requirements for the ECT
given the current state of its development (i.e., the ECT and SEM tools). For a system the
size of the EDRB, close to 1.5 technical staff years would be required. However, most of
the effort is concentrated in three major tasks: generation of test cases, development of
test environments, and resolution of don’t cares and the creation of additional test cases.

An additional candidate for automation is the generation of semantic relations. Although
not a particularly labor intensive task, it requires a detailed understanding of the semantics
of the module and is prone to errors. Errors in the statement of semantic relations can
in turn invalidate the rest of the ECT effort.

10
M. Hecht

SoHaR, Inc.
10 of 30

- LI

-l

Therefore, the most promising areas four tools development are:

1. Semantic Analyzers: The SEM program requires a semantic data input file which is
manually created. Experience in creating such files has shown that the process is
subject to analyst error. A semantic analyzer can generate such files automatically.

2. Test Case Generator: Test case generation requires identifying those input and
externally set variables that satisfy (or do not satisfy) each condition and the values
that should be assigned to these variables in order to execute the path specified by
each rule. This identification is a matter of tracing how variables are set and used
and may be amenable to automation using an existing static analyzer. This tool
would find each condition in the code, trace variables associated with these
conditions to their inputs, determine what ranges input values should be used to
satisfy the specifications imposed by the rule, prepare a test case input file, and print
the test case.

3. Debugging Script Generator: The work needed to generate a test environment can
be largely reduced if batch oriented debugging tools such as dbx are used. The
importance of the batch orientation is that test cases can be written off-line and
input as files to the debugger, and debugger output can likewise be examined either
manually or automatically.

4, Support for Generation of Additional Test Cases: Resolution of Don’t Cares and the
generation of additional test cases requires understanding of system-level concerns
and association of these concerns with variables and control flow of the unit under
test. By definition, the process can not be automated; otherwise the designed could
be analyzed and the concerns would be resolved. However, providing cross
references to variables and control flows which reduce the repetitive labor involved
in performing this analysis, will result in a significant reduction of labor and in more
thorough and uniformly high quality analyses.

6 Conclusions

The result of this work was that it was possible to analyze a large section of code which
shares many characteristics in common with future real time distributed control systems that
will be implemented in the next generation of aircraft and space vehicles. The results
further showed that traceable test case specifications are generated, that unambiguous
completion criteria can be established, and that automated tools can be successfully used.

Additional work is necessary to reduce time and resource requirements by the development
of appropriate tools. The benefits of such tools are exemplified by generation of the basic
condition table which was previously an error prone and labor intensive task. With the
ECT and SEM tools, this step has been reduced to a negligible portion of the total effort.

M. Hecht
SoHaR, Inc.
11 of 30

wl ol

oot

7 Acknowledgements

This work was sponsored by the NASA Langley Research Center under contract NASI1-
18811. The authors wish to acknowledge the interest and support of Mr. Carlos Liciega,
the technical monitor, as well as Ms. Susan Voigt, who provided the motivation which
resulted in this research.

References

KING69

GOOD75

MCCAS7

QUANSS

TAI87

P. King, "The interpretation of limited entry decision table format and
relationships among conditions”, Computing Journal, Vol 12, p. 320,
November, 1969

J. Goodenough and S. Gerhart, "Toward a Theory of Test Data Selection’,
IEEE Transactions on Software Engineering, Vol. SE-1 No. 2, June, 1975, p.
156 :

J. M. McCall, et. al., Methodology for Software Reliability Prediction, Rome Air
Development Center, RADC-TR-87-171, November, 1987

Quantum Software Inc., QNX Operating System Reference Manual, available
from Quantum Software, Kanata, Ontario, Canada, 1988

A. Tai, M. Hecht, and H. Hecht, "A New Method for the Verification of
Fault Tolerant Software", Proc. EASCON ’87, IEEE Catalog No. 87CH 2491-
9, November, 1987, p. 53

12

M. Hecht
SoHaR, Inc.
12 of 30

VIEWGRAPH MATERIALS
FOR THE
M. HECHT PRESENTATION

5794

T L) [y g (] [T [T .) s ¥) ¥ ¥ V- W e T et

v : ' O [N

e [l

6861 'JOQUISAON

v ‘sejebuy son
pejesodiodu] HeHoS

Aq

aw ‘Nequessn
19jue) Wby ededs preppon YSYN

doysiiops Bupsauibuz asemyog jenuuy Yluaauno4

0} psjuasse.d

L188L-LSVYN joenuo)
9JEM}JOS JURID|O] }INe4 JO UOHBOPMUSA 10}

sajqe] uonIpuo’) padueyuly

- HEHOS

M. Hecht
SoHaR, Inc.
13 of 30

M. Hecht
SoHaR, Inc.
14 of 30

HeHos je padojanap
Bujeq a1emyos jueiajo} }nej 10 Bujsjwoid jsow ey} 8q o} paseadde yoeoisdde jesouab
oyl -suopedjdde jeoniido 10j jepuasse S| uopesauab osed)sa) aA09yd 10) ABojopoyaw v
suonoe Bujssjw 10 suoppuod Buoim [eanas pjnom ey
suopeeAn ypm yied yoes ybnoayy sessed ejdjjinw jo esnedsaq jney eyy bujeans. jo
pooyjjoyl| J93ealb yonw e sesod SUOpIpuod Jo suopeuIquiod ajqises; jje Jo bupsay
§)9S S8} 9Al}090 asow Bupessusb Jo poylew e se ejqe} UORIPUOD pajesjsuowag
(q+e jo peejsu| q4e) Yied e uo suopoe Bujssjw 10 Buoip
(0 =< 41 Jo peajsu} 0 <V d]) suoppuod Buoim
(0 Aq epialp 10§ 3}o9yo 0} ainjiej) syjed jo uossjwO
sadA} Jou1@ uowwod 1o} ejenbape jou sem Bupsay yjed jeyy pamoys
S0.61 9y} uj Yeysen 's pue ybnouspoox) ' Aq auOp HIOM U0 paseq poydn

aNNOHOMOVE

HEHOS

[1 A B B Ll

uopesauab ased 1s8) uj HOYS oYy} 8dnpal 0} SUO|dUN} Jeuokppe Ajuapl
s9seo 1s8) Jo uopessuab Aydwis jeyy seapoesd Bujpos Aypuepy

sojnJ Jo Jaquinu 8y} adnpas o) sa|bojopoyiaw dojereq

Ajjeopjewolne sejqe; uojjipuod ejeseusb o) sjoo3 dojanag

SOlINOIIP Osoy) ejejaejje o} Jybnos ep

ABojopoyjow jeu|blo 8y} uj PeJep|SUOD JOU BIOM SjUBWBIL}S ,8]IYM, pue ,eSed,

epnjjubew
JO Jopio ue Ag poye Bulpod ey} peadxa pjnom sased }sa) Bupessuab 1oy uoye ey)

P3JopISUOD 8l SUOJPUOD JO SUORBUIGUIOD B|GISEd) ||é JI 8)NPoW |jews
B U] UdAd IN220 pjnom sajni jJo spuesnoy} uj Bupnsas uojsojdxa jelojeulquod y

ss@o0ud auoud
losie pue Bujwnsuod ewy} e s} S3|Gge} UOIPUOD JO uojesauab ‘weisboid opsiess e uj

swesbousd sabie| 10} |espoesdw) sem poyiew ey)

(Penupuos) ANNOYODNOVE

M. Hecht
SoHaR, Inc.
15 of 30

M. Hecht
SoHaR, Inc.
16 of 30

s)insal ezAjeue pue sased }s9) uny
(sqms pue siaApp) JUSWUOIIAUD 1S3} BY} 8jeal)
(synses peyoadxa Bujpnjou)) sese) 1sa) suleq

sosAjeuy Ayjiqelles pue A)ojes Jo sjnsal pue ‘sanjea |ejoads
‘sjuswasnbal jeuopouny uo peseq ,sale) },uUo0(Qg, 6AjoSal 0} S3|NI |euolippe 8jelauar)

(W3s pue 193 sweiboid om} Bujsn pawlopad) s19 ejessusy

AYOTOQOHL3N 103

HEHOS

(RIS L NNLR LA L]

N !()bTIUODBZ
(Zspou 1Rz || I9pou TTe3y) 37T

(

‘anI3 = tTapou Tyej

@ @[] cepourtmn 15pou=yr; :po b esTe
— {
- " < (Zapou)Yoays :gd ‘9N13 = zapou Ttej
" % < (12pou)X29Yd :72 } 9sTa {
r X & | (zapou ‘[2pou)snsudsuod;j :[d *0 41331
b (0 == (Z9pou) yoayo) FT
b0 == (T9pou) yoayo) 3T
} ((zspou ‘ 1apou) snsuasuoo i) 37
3718VL NOILIANOD INVLINSIY WYHO0Ud J1dWVS

(@3NNILNOD) ADO10AOHLIW 1O3

M. Hecht
SoHaR, Inc.
17 of 30

w » 1 w (I I - Tlol am " [t . [e mimw s

14 URrR 2

Pa)OAUIl
Jou ()Byuoosas uousawl) enjied Zopou (e}
Lopou ey ¥
(esibe sepou y1oq
JO siamsue ybnoy} usas) pexoAul (cepou)
si ()Byuodas :uUoUBNID SS8OINS }oayo €0
‘pajle} eABY gopou pue |8pou jey} (1epou)
MOUS 0} ¥08Y0 JO senjeA uinjal 18s 8JeAeg »}o|yo 20 b
ese) 1sel Aeneg e|qeleA Uuonpuo) 8Ny

sisAjeuy jueleoueyuy ese) 1sa)

(Q3INNILNOD) ADOT10AOH13W 103

HEHOS

M. Hecht
SoHaR, Inc.
18 of 30

E

(s1o119 uonejuswejdwiyo Bupjooprano o) buipes| suopdwnsse snoauolsd
jo uopemadied esnes ued Ajua jenuew) AQuUa jenuew ajuBLIS ||IM SUOISIAA BINng

oJ}} 1X3) B Se SORUeWas Jud o} 4asn salinbal uojsian Juaung
sopuewses weiboid Jo uopesapisuod Aq ejge} UORIPUOD JO 82Z)S SIdNPaY

W3s

sojjuewss weiboid Jo uopelapISUOD JNOYIIM B]ge} UORIPUOD SIeIEUdN)

. suopipuod ajdpinw ay} jo sdjysuonejas oy} uo
paseq sajqe} sajesauab pue suopipuod Areun ojuj suopipuod sidpinw sesodwooseq

(prepuejs D ISNV Woiy uopejAap) siosse jespewwesb s)o919Qg

sjuewsjejs 10}, pue
“OIIYM, ‘YouMms, ‘I, Woiy suojssaidxa JeuonIpuod 8y} sjoeNXa pue 8pod I sasied

103

sajqe] uojpuo) uojjessusr) Ajjeopewoiny 1o} sweiboid

(G3INNILNOD) ADOTOAOHLIN 103

HeHos

M. Hecht
SoHaR, Inc.
19 of 30

M. Hecht
SoHaR, Inc.
20 of 30

NV1
EUOIJIRUUOD OF — -« —m

I
ul..[.. . ..M\.Ut. — e
= | Y
co ” \\
_ _ _ ../../
| |
Co | : | | Vo]
| L]+ Imm L.—. o (I v M) z [»
P | | - \
& _ _ P . “ ./
opoN : . : .
JouiAsedng ... (. W _...l..h s (I ¢ (I v (| o
o |
SPON
fouot1042dQ

ININIH3dX3 ALIHEISY3d

uopdpiosag waisAg yobie)

HEeHOS

(ey0)dwos 0y pasnbas Buissesoud pue
JUSSUOID |eUOllIpPR) SeALle jeaquesy ou | epou uojuedwod uo ssadoid jJ0oqal sajepiuj

Aiessadeu | sezjuoiyosuhsal pue jeaquesy uojuedwod syoey)
(spuodas g 0 A19Ad) Ajjeusaju) pajesauab jeubis ojpouad Ag uaaug
dnues buunp waisAs bBujzjenu) 1o} s|qisuodsay

uopdposeq 9INPOoW gH

s)nsay jo Ayjqeidessy seujwiaiaq

(ereusoyy 10 Alewpid) uny O} @1eM)OS JO UO|SIBA SaujwiaeQ

(mopeys Jo aApoy) sjoy saujwialag

(.uesH. peojjes) uojuedwo) jo snjejs jeuopesado saujwiaeg

(.leaqueasy, e pajjed) sebessapy snels d1poldd sajeisusr) Jabeueyy spoN
suopjounyg wajsAg sabeuely epoN

(panupuod) INIWIHIIX3 ALITIGISY3S

S

M. Hecht

SoHaR, Inc.
21 of 30

o e oo W Wl L1 -] L] LUTET
L TR WNOS Juuo WU posde o AL o/ fpotede o
/e UNGO 1EBQIIEIY WIIIND s ,uojuedwo) o/ !3uncd dwod
f3unco Aw

/v NDO 1enqilieay 1WNIIND $,Bpov AN o/

vy
wy
wy

{pende(s *3uncd dwod ‘Iunod”Aw)ouds pasu

t12)a0) o/
(2 'Inqiuncd ‘suril) A1daa
{sue1) == {0 ‘JNq ‘SuRi)) DAtDdaI0) S

/I

138I¥4 » IF[ITUY

o/ {
3NNl = Dudsuy
!

fe SuAwuy |

|
19 < wnod Aw = |1)3nqIuncd
2339 ¥ wnod"Aw = [p)Jnquncd
IUN0D dwod = IUNCD AW
} ((tpesders *junco dwoly 43unco”Aw) ouAs peeu)| Te1Itul)
33 {0 =< Wnod dwod)) 3T
tgyvo 3, (T))nad + (8 >> ic)ma)} = vomn:l
(3% v lo}1nq) + (9 >> (1}InQ) = IJuncd dwod
/o JOFJNOW o
wo1) qu dwoo Jusdes 1sow 2B 4/ (1 ‘JAG ‘3. ‘Uou)pues
) ssqe |
{8 << Wwnoo_As = [[}INqIun0d
23)%0 1 Wnod Aw » [0)INQIUNCD
U002 dwod = uN0d Am
) (tipesdes *1uncd dwod ‘Iunco” Aw)auds pesu || T®1ITNT)
99 (0 =< WUNOO dwod) 99 (UOE == BNITIS)) 7
/v SwE1} QU 1981 L/1()8X2171 18D = [AO1)
{0 « pasdels
£033%0 9 lohina) + (8 >> [1))nq) = WNOD dwoo
S {IALINTIN "TIONVD W3INIL) Iemy 1 3es
Je 103TUCH ,
wo31) qy dwod XU 0] e ,/
2 ITWVNINIAISADIL ‘3AY

211 *Jnq 'Ly, ‘uow)puss - BNICIS
4 2avaN 10¥04 NINIL) Jew]d e
[238)
2ITWVEIRTISHOTL » € ‘TALLIVIIN ‘AQVIY 2DW0J WINIL) Jewil 188
’ (e g1
) os1® |
23081 = DuAsut
os(®
13STIVE » Dudsuy
((pesdr(a *juncd dwod ‘3unocd Aw)duds pesu) Ji
2(ygx0 ¢ 1Z137q) ¢+ (B >> (€]jnq) = pesdeia
2(3a%0 2 (0)20q) + (8 >> [1))n@) = IUNOD dwod
Je IOTUOM
1) qy deod Jusdes Iscw 18D o/

/o Juhmuty o/

(1 Inq ‘ad. ‘uow)puss
f{)m3017 8D = 1N2Y2
anjo
fiemy) - WVEINIISHOLL ‘FALIVIIN ININVA VINIL) Jew) Y8
(oWy1 « INVNIWILSDLL) I
) (audsuj} 3y

IIUVNINISSADIIL =+ [A21)

ZN01Y ¢+ {(IN2T3 - FI3I%0) L (IN21) > Z¥21 = ewi)
f{)ex3y2 38b - ZNO13

/e

fieeqliTey o

INOU SY1 JOJ SEII VO, PEI[SSP Y NS|[qeiIse O INVEINIISNIIL »
wol) Pe1IdvlIgQNS aq Ued 3] INY1 D5 ‘pelrrieush sea 1eaQlriESy
ey oy Sous pasde(a (83071 JO §) SW]) JO WNOWE BUjWINIAQ]

.\

21913 - WY 2

/s ASEY 203IyUOM 20] JI€A ./

i ¥ [¥ [»

/+ (weaboid ,
21x2 01) Induy piroqian NI o/ 2 (sue1y 'pax dj}aixs w2ayd
!B << WN03 Aw = |1)InqInod
LPIMp ¥ nod AW - (01 e vnos

/w Puncie 8[2A> ./ {0 = N0 Aw

(0 > junod Aw) JY
!t =+ JuNOD Aw

) t22) 10

Ze Dran) shury o/

s sy213 190 - (¥

) /v EUDTIFRID
N8RY [RULJ 10] IIPA o/ 2007 ‘IALLVIIN ‘4NINVA WINIL) J3uTI 288
2LUIE "PIU AN ‘UDW,) BIFIO] DWEU « UOW)) PTINA

£1(ond3 | 11a3)- ¥ (pay djjuoyido 186 ‘pqy djjuoido lee
. _ futpIs = pay d}
0 ‘eSuRId, ‘0 ‘D ‘0 ‘Atdojad AN °Z "0 "1~ ‘D ‘0) 1270310 - suwi)

2 PIUTAR ‘aqu.) YOTIIE SwEU

l0¥Q = lolmoy1® 2¥3

/« XET] BIYY U0 sun}IdEOX® WeISAs elouby ./ 2333)%0 - _o.:-_._oalu-u
210 ‘0 ‘0)JaTpuUTy Ox®
1y = Aryaoyad AW

/e SuofIwdjdde [1® ueyl Ieybiy A3ja011d 198 o/ 2 ip) Ataoad e

flz}morty ow3 ‘|2)1mied Du] paubisun UID IS

3wyl ‘ZR2T2 ‘121 paubisun
tpax dj, N4
tlg)opoude ‘fZ2]3nqauncd ‘{y)jnq Jey>
/e JC0QUITIY
IWIYY SYY B BINY 3T INWL o/ 2anel = TeRIITMY wy
/e UDTURdWOD y1ilm ,

porjucIyouAs BT XS®I ST JT INNL o/ 2381vd =~ Dudsuj wi
Juow paubysun
snae3s wy
i wy
suesy paubysun
/s P,O81 SETRM UN0D dwod SOULS pasdels EXOT1 ,/ID = pIsdela k1|
/v IUNOD Jeaqliesy voiuedwod ./ 20 = WNOD dwoD W
/» wNnod reqlirey , 10 = unod Aw Wy

)

thujew

=4 QYe IPNTOUTE

R TR T Y TR)

<N”AIp> 3pniouyy

<Y 'OIpPIS> WPNIOUIP

<y obrw> IPAIOULS

/I

| {spou uojuedwod 8y} mO1] €1eaqIIERY SPAjaD@I YIIUR) .

PPOU S1YY UO AFE) JOITUOM BY1 A SPOU UDTURAWOD BN YITM UO|IPZ TUOIYIUAS
UIPIUTNE 01 SO(21 YEEY FIUL (U QU UL PRTIIO8dY) INVYH.INIISNIIL

JULINUCD WY] UO PUswq §] B2 (8 wwel] eyl ‘wesboid eyl NG | [iA vwj Aur
® (,0, 10) ,b, v ObujdA} ‘JosjaIRdne By Pue SPOU UOIURAWOD By) 01 WD
1eaqlITey oY) JjWSuEI) 01 ¥BE) STUY AQ PRITRID ‘IEE] JUSIINIUOD Pouards

® 5] SNVNL NPT} €)4] UO pexdolq Pues s} 3] J§ I5¥) SNVEL 1 O) ss](de
T a1 IR ‘swei) Axsas [rubis jesqaivsy R s3jvisush yse) weiboad syl

e e o s v v e

T 686T 6Z:LZ:0T ¥1 Awn ung o'qyu

HEHOS

coroe

L)

B
5.
%
=3
-2

53
wed

=X

=3
G o
S5

n

22 of 30

el

:26 1989

50

Condition Table (with semantics knowledge) for function "main%

Mon May 29 20

hb.out

Page 1

cl2 cl3 ecld

c2 cl cd [cé c? c8 c9 c10 cl1

cl

E>wxeEC

NENC

ecec

MERNENE RNENE NE

EL Tl SNt

LI wmaecCcEceEeceEE

mw™EeEEEECECCE R

S On 0 B D D O B B 3 D Dn

Ea R T R T]

EE R T R R R

I b oxNCECcRECREECECCECEGER

T 33 3% 30 5n O D Do 3 Dn Dn 5 Bn On 3 By 3 D B D Dn

»EECEEECEC

N ENO~D O

o
o -
: 3
] (3]
—1[g
-
iz &
[- Y
§852
g tw O
Zyid
A
L

initial

need sync{)

c5:
cé6:

{stat us==-mon)

c?

(inftTal

{comp count>=0)
c10: need _sync())

[I Y I O A R

OQe-iNMENENDONO ~
= e e = - NN

{inttTal

(coma count >=0)

cl4: crecelve()==trans

H
s

cl13: need sync{))

cll
cl2

MNE M

N E

L]

e

Lkl

E

LR]

22

2]
24

[~

EMENENRECEMENEME NE MNE M
E T T R R B O - O - - R N I B B B |
—
CECE T I 2DW™WELCECC T | 221 1>
~
PMBMEC I IMPMIMMME L)
LI T R R B S O I I I R A
[T R R O A I O A O A - -
ECCECH 1L LT 18 DD

MM NN ECECEEECEC >3 >™

ER IR T T T T R R R T T N R -~

[0 - -~ N S I - - - Y O - - - - -

LRI T T B T R B R T R)

[-3 - - - -2 - - S - - I A I A A - -

34
35
36
37
38

"o~ oOe - N ™
NAaNNNMNNAAMMm®

ORIGINAL PAGE |5
POOR Quai Ty

[]

LR

(-3

LR

LR

[

[=4

Lo

[

c

c

46

eccc

e E€ccC

~

M. Hecht
SoHaR, Inc.
23 of 30

11

i

Vol

Routine: hb.c
Rule no: 2

Test Case no: 2.1
Desc. Author: S. Hecht
Date: J

Condition

C1 ! (mon=name_locate())
c2 my_count<o

C3 insync

c4 TICKSPERFRAME>time
C5 need sync()

cé6 initial

c7 status==mon

cs8 comp count>=0

c9 initial

Cl10 need_sync()

Cll comp_count>=0

c12 initfal

Cl13 need_sync()

Cl14 creceive()==trans

Vvariable Name

my_count

bufl (comp_countl, elapsedl)
buf2 (comp_count2,elapsed2)
buf3 (comp_count3,elapsed3)
insync

time

need_syncl

need_sync2

need sync3

initial

send2monl

send2mon2

send2mon3

monstat

transrep

transnam

une 8, 1989

<
[+
[
e
®

I 3

Applicable
Condition
/role*

Input
Value

Expected Observed
Output Output

lcl/s,c2/b
cl3/s

c3/t,c5/s
c4/t
c5/t

iel/s
cl/s

cl4/s
cl4/t

* /t - variable tested only

/s - variable set

/b - variable both tested and set

[\

OO0 O0OV
[2))]
~I

. m

OCO0O0OOKrROOKKOAIOOUNWL

1
[

transl

0 0

5,0 5,0

0,0 0,0

0,0 0,0

0 0

6 6

1 1

0 0

0 0

0 0

1 1

0 0

0 0

0 0

0 0

transl transl
M. Hecht
SoHaR, Inc.

24 of 30

E O

£l

(ubisap 10A1p e31n0p Jood “9°]) siq ysew idnuiaju; Jo Buyes
pue sjdnuejuj ueamleq SUOPUOD 8d.4 AQ PasNed Sain||ej JOAUP HJOM)SU Jusajuisiuj

yoo|pes(yseyr

(mojueno u; pajnsal) sinoswy edjaep Bupnp
S}IN24J9 [enyiA Auew 00} JO uopeesd AQ pasned SUOPREBIJUNWIWOD HIOM)BU U] Sainjjeq

Bupsa) 193 wsmiapun jey} ejnpow 8y} 0} pPaje|as aIam

sjine} a@say) jo euoN :(Bupss) uopelbaju) pue jeuopoun)) spoyiow sBY0 Buisn punoy syneq i
jeuopesado sawosaq
wojsAs @ouo sainje} jo Jequnu ejeuojpodoidsip e asned jeyy sioud jo jesjdA|
‘Bupyse} uopeibajul 10 Jeuopoun; ‘yied Bupnp punoj useq eAeY JoU PINOM 8sed aley
"Meytar) pue ybnouspoor) woij uopedyisseld Joid syyed Jo uojssjwo jo ejdwexy

‘A1essadau sem uopezjuosyduis uaym azyuosydsuis o} jou
UOISIOaP Uj }NSal pjnod jeaquesy |edo] juadal uey) s9jealb jeequesy uojuedwos ,ejejs, v

193 Bujsn punoj yney
s11ns3y

HeHOS

M. Hecht
SoHaR, Inc.
25 of 30

- [EOLAY) [l »

» [T | ——— W [[3 [T

14}

1y 9v6C Ivi0ol
gl unijiy | sased }s9) Jo Bujuuny
(uonesypow

4 ovoL ysey/siy 08 QUIINOJ pueR ‘SqN}S ‘SI9ALIP) JUSWILOIAUD }S8) JO UOJRIAUIY)
sased

ay ose eni/ay | }s9) jeuopippe Jo uojjesauab pue sased juoq Jo uUopnjosay
Nl ased Jsaj/uju 0} sanjep jejoads jo uopesaudn)
14 00v1 ey g sose) 1S9 o|ny 2|qiseaq JO uojeIaudr)
i un/ay | a|qge] UOIIPUOD JO LUOREIBUIY)

Y oEl yseyy o) V30l JO uohelausn
Iy 0L epow /iy g SUOJEJ]aH SNUBWAS JO UOHRIIUID
juswalinbay Ho}}3 Joqe ysel

ajewns3 Hoy3 Joqer

(penupuod) s11NS3Y

HPHOS

LD L

M. Hecht
SoHaR, Inc.
26 of 30

ST

s|jes eupnoigns 4o} onjeA Aq passed siajowesed Ajuo esn
Buisn Jaye sajqepea jo bumes ezjwjuln -
ajnpow Jad SUORIPUOD Z| UeY) 8Jow ON -

MOyg eonpay ue) sadpoeid bujpo)

pejewojne sem ssodoid ay) jo ped euoid 10419 pue eAjsual| Joge| ¥
pe}o9.109 puk paisjunodue esam sbnq Jouln
 "we)sAs 91eMYOS ©JJUS UO UNJ 8I9M s]00} W3S pue 103

9Al09)J9 eJke S|00]

eua)40 uopadwod snonbique ssa

suJaouo0d Ajojes
10 Jeuonouny spveds o) pue syjed syjoeds yjoq o} paoesy Ajjoasp eq ued sased 39|

Aupgeeoes 10} syyauaq sapiaoad Bupse) [IMONAS YIIM [eUOROUN) JO uolelbajul

(penunuod) s1INS3Y

HeHoS

M. Hecht
SoHaR, Inc.
27 of 30

i e LN » 1] - i - u L T “ [¥ | ¥ ¥ : ¥ i W e

91

wolsAs jobie)
0} Jejiwis s) wajshs juawdojanap j| pejeljoe) eq ueds Bupse) snonupuod pue Ajie3

ew]} esuodsas pue ‘@oepeju] ‘Bujwyp o} }se) 0) Aiessedau s| wayshs pajesbajul
uojepjjeA pus-o3-pud Joj bujpse) jeuopoung

eoue)deooe J9WOISND 10 ‘UOKEININDD
‘uopjesyyljenb ‘ARAl usnbasqns ejeyyoe; 0} papiroid ale SpI0daL BjqeadRI]

spoyjew 1ayjo Aq punoj oq jou pjnom jey} pa1odlep eiem S)nej epqns
Bupsa) Jun 10 SNPoOW 10} BANRO3YS S| 193

Bunsa) uonepijea
pue 193 o} induj sapjaoad sishjeue eapelpuenb-juas Jayjo 10 sisAjeuy eai] }ned ‘vIn4

HOJ}® ABA B JO IXajuod 8y uj 103

NOISSNJSIa

g
L)
X
O
2

M. Hecht
SoHaR, Inc.
28 of 30

L1

SuJI9ou0d Ayjiqerel pue
Kyojes Jo pue 8pod 3y} Jo abpajmou) jeUOIOUN) WOL) S19)S9) BAS]|9 JOU S0P UOHELOoINY

SaWo9N0 pajoadxe eujwasiep 0} JasSn 8y} YIM joridju|
‘¥se} Jopun ssjqelieA yyum sinduj ejejoosse 0} siazhjeue oness jo indino esn ue)
sse20id oY) jJo ped Bujwunsuod ewyy Jsow ejewolne o} pasnbas spiy
$]00] uojjeIaudx) ase) 1so)
suopjdwnsse snosuou@ ejenjediad
ued jey; Ajanoe suoid Joud ue S| sojjuewas Jo uojjessusb jenuew jussing

si9zhjeuy opuewag

sojnt Ajyjjiqerse} 1o} uopeuswajdw) jo suope|ola bejd
s19)93y2 9jAis bujpo)
Sjoo] |euolppy

NOISSNOSIa

M. Hecht
SoHaR, Inc.
29 of 30

» i - - > U T R woloe IR » ¥ 3 Vo [' »

81

19A9] Jun ey) e Buyse) Jo suesw
oAl09Ye pue ‘ejqeades) ‘Yybnosoyy B eq |Im 193 oy} ‘padojonsp ele Sjoo} Yons UdYmM

S9SEd 1S9} ojesousab 0) pue SjUBWUOIIAUD
1S9} 9jea1d 0} pasinbais swy pue Joqe] 8y} aonpaa 0} Alessadau aie Sj00} jeUoRIpPpPY

wesboisd ABA 1IN} e jo ved se luessadau
osje S| uojjepjjeA pus-0)-pud pue bujse) edepaju| HualOINS JOU S| UOHEIPLIBA BAISUBU|

wolsAs |0U0d Swi [eas [enjor JO UOHEI|IISA 10) pashn oq ued ABojopoyiaw |93

SNOISNTONOD

HeHoS

M. Hecht
SoHaR, Inc.
30 of 30

' 1 e

APPENDIX A — ATTENDEES

5794

-

i L

i

1w

FOURTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP ATTENDEES

ADAMS, KIRK ..c.cceseescssssssess.COMPUTER SCIENCES CORP.

ADAMS, NEIL:.csss05s502sss2+ss+.BENDIX FIELD ENGINEERING CORP.
AGRESTI, BILL W..:..:ss2esssss4sss:.THE MITRE CORP.

AIKENS, STEPHEN D..........¢¢¢.....DEPT. OF DEFENSE

ALANEN, JACKvesse0sss0sss0..S0HAR, INC.

AMBROSE, LESLIE¢c¢ccsss2-4+--.THE MITRE CORP.

AMMANN, PAUL E...cccvccescecessess.GEORGE MASON UNIVERSITY
ANDERSEN, BILL«¢¢s++.-...DEPT. OF DEFENSE

ANDERSON, FRANCES¢+¢css0s++..STANFORD TELECOMMUNICATIONS, INC.
ANGIER, BRUCEc¢cc0e0eess0...INSTITUTE FOR DEFENSE ANALYSIS
ARMSTRONG, MARY¢¢sc20:2204..1IT RESEARCH INSTITUTE
ARMSTRONG, ROSE¢¢scceeesss...MOUNTAINET, INC.

ARNOLD, ROBERT S...ccevsvevsssesss . SOFTWARE PRODUCTIVITY CONSORTIUM
ASHTON, ANNETTEccccess+s+...NAVAL SURFACE WEAPONS CENTER
ASTILL, PATRICIAccssse++5..CENTEL FEDERAL SERVICES

ATKINS, EARLccccs0csess00s0..ELECTRONIC WARFARE ASSOCIATION
AZUMA, KENNETH I...ccccceeceess4+0..FORD AEROSPACE CO.

BACHMAN, SCOTTccccss4ess00...DEPT. OF DEFENSE

BARDIN, BRYCE M....:vcceesesss0....HUGHES AIRCRAFT CO.
BARKSDALE, JOEccssc0s00+...NASA/GSFC

BARNES, BRUCE H.....c.cteseeeeee.. . NATTONAL SCIENCE FOUNDATION

BARNES, DAVID eeecessesss .UNISYS CORP.

BARSKY, JERRYccec0sss0000.:.0..BENDIX FIELD ENGINEERING CORP.
BASILI, VICcciucerecsssncnnnns UNIVERSITY OF MARYLAND

BAYNES, PERCYccceccnnccncs VITRO CORP.

BEALL, SHELLEY¢.... ««»..SOCIAL SECURITY ADMINISTRATION
BENITEZ, MEG ceenen esesees..DEPT. OF DEFENSE

BEWTRA, MANJUcscese0e......CTA, INC.

BIOW, CHRISTOPHERDEFENSE COMMUNICATIONS AGENCY
BLAGMON, LOWELL E....... eeeeesa.-+.NAVAL CENTER FOR COST ANALYSIS
BLUM, BRUCE T.......cccevsnessees..JOHNS HOPKINS UNIVERSITY
BLUMBERG, MAURICE¢¢vu0ceees+.1BM

BOND, JACKcccuiniccnnnnes e DEPT. OF DEFENSE

BOND, PAULccccceennnnns . ++..SAIC

BOOTH, ERIC .:i.cceessssscnsscess..COMPUTER SCIENCES CORP.
BOURNE, WILLIAM¢:¢s04:+...AMERICAN SYSTEMS CORP.

BOYCE, MARY-ANN¢«.........RMS5 TECHNOLOGIES, INC.
BRAUN, CHRIS «esss+...CONTEL TECHNOLOGY CENTER
BREDESON, RICHARD W...... «eesssss+..OMITRON, INC.

BRIAND, LIONELcccccscese.s..UNIVERSITY OF MARYLAND
BRINKER, ELISABETHNASA/GSFC

BRISTOW, JOHNccccs060000+...NASA/GSFC

BROPHY, CAROLYN PR NAVAL RESEARCH LAB
BROWN, HARROLD E.......cccceeenncns NASA/MSFC

BROWN, MARTYcccccnccncccs .COMPUTER SCIENCES CORP.
BUCHANAN, GEORGE A.....ccvseees....1IT RESEARCH INSTITUTE
BUCKLEY, JOE ceceeeeaeenae COMPUTER SCIENCES CORP.
BUHLER, MELANIE:2¢ss+....COMPUTER SCIENCES CORP.
BURCAK, THOMAS M........cctcececnnn PLANNING RESEARCH CORP.
BURLEY, RICK +sesenssss NASA/GSFC

BUSBY, MARY B.....ccvcvvovtn eeses-..IBM

BUSH, MARILYN crsreneNASA/JPL

5794

Tl

FOURTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP ATTENDEES

CAKE, SPENCER C.....eveveveeeses...HQ USAF/SCTT

CALDIERA, GIANLUIGI-......SOPTSIEL

CANTONE, GIOVANNIUNIVERSITY OF MARYLAND
CARD, DAVE .cteeeeeescesssnesesss.COMPUTER SCIENCES CORP.
CARDENAS, SERGIOceeeess....UNIVERSITY OF MARYLAND

CARLISLE, CANDACE ...ccesvevsons . .NASA/GSFC

CARMODY, CORA .c.:csssasssssssso-. PLANNING RESEARCH CORP.
CARPENTER, MARIBETH B..::secoevccsne CARNEGIE MELLON UNIVERSITY
CARRIO, MIGUEL¢ecss00ee+.....TELEDYNE BROWN ENGINEERING

CASASANTA, RALPH ...¢sse¢se00es+4...COMPUTER SCIENCES CORP.
CAUSEY, MICHAEL A.......:vs00.0....COMPUTER SCIENCES CORP.

CERNOSEK, GARY J.c:cvseesesoseesss . MCODONNELL DOUGLAS SPACE SYSTEMS CO

CHASSON, MARGARET C.vvvvsvvsaenses.IBM
CHEDGEY, CHRIS .e:veevevveeass.-..SPAR AEROSPACE CO.
CHMURA, LOUIS Jeveeeeveesenensse-.NAVAL RESEARCH LAB
CHUNG, ANDREW ...c.eecesseeesssss.FAA TECHNICAL CENTER
CHURCH, VIC +evceeeesvessnnnenssss.COMPUTER SCIENCES CORP.
CISNEY, LEE +evevveeseesnessnssss . NASA/GSFC

COBARRUVIAS, JOHN R..ovvvvceneceans NASA/JSC

COHEN, SARA .eveeessesnnvecessse..GENERAL ELECTRIC CORP.

COLEMAN, MONTE ..::v:css0s00sss...DEPT. OF THE ARMY
COOK, JOHN F.cevensssssssnssssnsss NASA/GSFC

CORBIN REGINA .«veveerssssseesess.SOCIAL SECURITY ADMINISTRATION

COTNOIR DONNA .cccsvvssvsccassss.COMPUTER SCIENCES CORP.

COUCHOUD, CARL B.:vevessssscsesess.SOCIAL SECURITY ADMINISTRATION

COVER, DONNAevcosvsssessses..COMPUTER SCIENCES CORP.
CRAWFORD' sTEw'..'..ll.l'lll.l...l

CREASY, PHIL ..::sssecessseeesss..MCDONNELL DOUGLAS ASTRONAUTICS CO.

CREECY, RODNEY .:iccoessnccacccasnss HUGHES AIRCRAFT CO.
CREEGAN, JIM ..:scsseseeacasses-+..FORD AEROSPACE CO.
CREPS, DICK .:vsseseecncccssesass.UNISYS CORP.
CROKER, JOHN .scssccccsesesssssss. LISAN CORP.
D'AGOSTINO, JEFF .:ccevsonncccnsann OAO CORP.

DAKU, WALTER «::cssesscssnsnsses-«.VITRO CORP.
DANGERFIELD, JOSEPH W..cvveeccessee TELESOFT

DAS, PRASANTAoeveeveeesss....THE ANALYTIC SCIENCES CORP.
DECKER, WILLIAMcveeeeessss...COMPUTER SCIENCES CORP.
DEGRAFF, GEORGE ...cccevooseceen...GRUMMAN

DEMAIO, LOUIS .+..:coseceeccsss....NASA/GSFC

DEUTSCH, MICHAEL S.................HUGHES AIRCRAFT CO.

DEWBRE, DOYLE ...cvvvecssseccssss .DEPT. OF DEFENSE

DIGNAN, DAVID M.....cvevessscses...DEPT. OF DEFENSE

DODD, JOHN Cuveeeveeovsnccesssssss . COMPUTER SCIENCES CORP.
DOUGLAS, FRANK J..vcovvesssssess...SOFTRAN, INC.

DUNCAN, SCOTT P..eeoveeeeeessssss..BELL COMMUNICATIONS RESEARCH,
DUNN, NEPOLIA +eeevveveesesssssss .COMPUTER SCIENCES CORP.
DUQUETTE, RICHARD «vvevevveronnnne DEPT. OF LABOR

DUREK, TOM_ so.evssenvccssssessesss - TRW

DUTTINE, VALERIEcocec.sss...NASA/GSFC

INC.

DUVALL, LORRAINEcs..0ss40...DUVALL COMPUTER TECHNOLOGIES, INC.

DYER, MICHAELccec0evossss--..1IBM

5794

FOURTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP ATTENDEES

EARL, MICHAEL ...:ccovcee=- «s««+.« INTERMETRICS, INC.
EDWARDS, JOHN:ceccecesssssssslIT RESEARCH INSTITUTE
EDWARDS, STEPHEN G.....:x2:s:4+44:4...NASA/GSFC

EGLITIS, JOHN ..cceceseeecsssessss+LOGICON, INC.

ELLIOT, MATTHEW¢.cccc0...:NASA/STX

ELLIOTT, DEAN F....cicvvvveccasns . .SWALES & ASSOCIATES INC.
ELLIS, WALTER ..:¢.ccvvecansesses .+.IBM

EMEIGH, MICHAEL:::ccs0s04+...L0GICON, INC.

EMERSON, CURTISc2cess-2+..+.NASA/GSFC

EMERY, RICHARDc:cc222s22+.+.VITRO CORP.

EPSTEIN, WILLIAM ..:.cccvoennnss .+ IBM

ERB, DONA M...:.:ccsecseesssss-s+++.THE MITRE CORP.
ESHLEMAN, LAURA «++...DEPT. OF DEFENSE

ESKER, LINDA ...:escssssssvsesess«COMPUTER SCIENCES CORP.
EUSTICE, ANNcs0eev0000...1IT RESEARCH INSTITUTE
EVANCO, WILLIAM¢¢-2......THE MITRE CORP.

FARR, BILLcccosss05% crenee .« . NAVAL SURFACE WEAPONS CENTER
FEERRAR, WALLACE ...:¢ccs++ ses++..THE MITRE CORP.
FERNANDEZ, ALcc... ecesenesss . COMPUTER SCIENCES CORP.
FERRY, DAN ...cvccveccccccscs «+...COMPUTER SCIENCES CORP.
FINK, MARY IOUISE A..ccc:c: .. ees--..EPA
FISHKIND, STANcccccecense .+ . NASA/HEADQUARTERS
FONG, GEORGE ...cccecveen cennen «+.IIT RESEARCH INSTITUTE
FORSYTHE, RON ...cccccceene ees ooy NASA/WALLOPS FLIGHT FACILITY
FOURROUX, KATHY ..:cccceveeen «++«.TELEDYNE BROWN ENGINEERING
FOUSER, THOMAS J...¢svssesssss+v...JET PROPULSION LAB
GACUK, PETER tesseresnssssSPAR AEROSPACE CO.
GAFFKE, WILLIAM E........... ev++s..PROJECT ENGINEERING, INC.
GAFFNEY, JOHNsvvvv...SOFTWARE PRODUCTIVITY CONSORTIUM
GAITHER, MELISSA e ...CRMI
GALLAGHER, BARBARA::++++.....DEPT. OF DEFENSE
GARCIA, ENRIQUE A.....-+.+ess+s....JET PROPULSION LAB
GARRETT, TOMvev-ves cemeeaneaa IRS
GARY, ALAN V....cvvvuns cveescasnr TELEDYNE BROWN ENGINEERING
GELPERIN, DAVID ceceaaans .+..SOFTWARE QUALITY ENGINEERING
GIESER, JIMcceeenvans eees0..VITRO CORP.
GILSTRAP, LEWEYccccessses-s..COMPUTER SCIENCES CORP.
GIRAGOSIAN, PAUL ..ccccceossns «+..THE MITRE CORP.
GLASS, ROBERT L.....ccveaun «sesss0 COMPUTING TRENDS
GODFREY, PARKE ...:cevovssss o= UNIVERSITY OF MARYLAND
GODFREY, SALLY ...:e¢ccescesens....NASA/GSFC
GOGIA, B. Kivvvvornoannss eENGINEERING & ECONOMY RESEARCH, INC.
GOINS, MELVINccc0ess «e+.+..DEPT. OF DEFENSE
GOLDEN, JAMES H....:.cov0 tsssessss SANDERS ASSOCIATION
GOLDEN, JOHN R....cctvvvunessssss .. . EASTMAN KODAK CO.
GOLDSMITH, LARRYs00.- «++..DEPT. OF LABOR
GORDON, HAYDEN H....vvvveeeocsn «++..COMPUTER SCIENCES CORP.
GORDON, MARC D.......ccuvevvccassn .BOOZ, ALLEN & HAMILTON, INC.
GOUW, ROBERT:.:i:ceevcves eeese+:TRW
GRAHAM, MARCELLUScccess0asss NASA/MSFC
GRAVES, RUSSELL J..:.ssscsssss::4...DEPT. OF DEFENSE

A-3

5794

[T

FOURTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP ATTENDEES

GRAVITTE, JUNE A.....ceeuevnsee....FORD AEROSPACE CO.
GREEN, DANIELccevsvssssss..U.S. AIR FORCE

GREEN, DAVID .«veveveevoeessssesssCOMPUTER SCIENCES CORP.
GREEN, SCOTT +vvveeeeccssanssssas.NASA/GSFC

GREGORY, SAMUEL T...ce0secsoscnsens
GRIMALDI, STEVE ...ceseesssse+0.,.BO0Z, ALLEN & HAMILTON, INC.

GRONDALSKI, JEANess0ss0000.COMPUTER SCIENCES CORP.
GUENTERBERG, SHARONPLANNING RESEARCH CORP.
GUPTA, LAKSHMIcs200s002...FORD AEROSPACE CO.

HALL, DANA ..oveecesoscses
HALL, GARDINER ...ccovoss
HALTERMAN, KAREN
HARRIS, ALAN W...coooonenn]
HARRIS, BERNARD0.cce0es0....NASA/GSFC
HAYES, CAROL .cvvevevvsssnnsssqss.UNISYS CORP.

eeeeees..FORD AEROSPACE CO.
HEASTY, RICHARD .¢...v:s0s0es0e0s...COMPUTER SCIENCES CORP.

«evss...NASA/GSFC
«ev.....LOGICAN, INC.

HECHT, MYRON ..eevuveoecsssssecesss .SOHAR, INC.

HECK, JOANN L...vecveecessnssassess . COMPUTER SCIENCES CORP.
HEFFERNAN, HENRY G......ccv0v-.....EDP NEWS SERVICES
HELLER, GERRYoeceeeeeassess COMPUTER SCIENCES CORP.
HENDRICK, ROBERT B......v.cecs.....COMPUTER SCIENCES CORP.
HENRY-NICKENS, STEPHANIENASA/GSFC
HERBOLSHEIMER, CHARLESFEDERAL AVIATION AGENCY
HILL, KEN .veeveviroocnnnnn .ev.....NASA/GSFC

HILL, MIKE ..cevoveeeeenceccessss..MARTIN MARIETTA

HIOTT, JIM .eeveeevanceacenssessss UNISYS CORP.
HOCHHAUSER, S. +vssecessscesssss..SOHAR, INC.

HODGES, DEIDRA ...svceveesssees-.-MARTIN MARIETTA
HOLLADAY, WENDY T..veveeeveceesesa..NASA ~~

HOLMES, BARBARAeoccoeueesss.CRMI

HOOTEN, MONICA +veveeevssesssssss. FORD AEROSPACE CO.
HORMBY, TOM W...veveeeoeoasanonsnns JOHNS HOPKINS UNIVERSITY
HOUSTON, SUSANc..c0:s....LISAN CORP.

HUMPHREY, WATTS «eesees.SOFTWARE ENGINEERING INSTITUTE

IDELSON, NORMAN ...ccceceteecees»..-ARINC RESEARCH CORP.
IRELAND, THOMAS ...cccosss0ss0+0...TEKTRONIX DEFENSE SYSTEMS
ISKOW, LARRY ..csscccscssesssssss.CENSUS BUREAU

JAHANGIRI, MAJID «vesseeesocsssss.COMPUTER SCIENCES CORP.
JAKAITIS, JOYCE .uicceseessoasssss..AMERICAN SYSTEMS CORP.
JELETIC, JIM .2ccceseasvesssnssss.NASA/GSFC

JENKINS-BNAFA, JOVITAccccee TRW
JOESTING, DAVID ..ecccesesesesss..BENDIX FIELD ENGINEERING CORP.

JOHANNSON, HANK ...:sess:0ss40...-.FORD AEROSPACE CO.

JONES, CARL +s+eecssessssssosssss..SCIENCE APPLICATIONS, INC.
JONES, DAVID ...ccevvsveseessesas.UNISYS CORP.

JORDAN, IEON .i.ctvveeseneesessss.COMPUTER SCIENCES CORP.

KARDATZKE, OWENv:ve0esss++-NASA/GSFC
KARLIN, JAY ...cceessesssoseessss.PROJECT ENGINEERING, INC.

KEARNEY, ROBERT ..::ses0es-es00...PLANNING RESEARCH CORP.

5794

esseasss.SYSTEMS ENGINEERING AND SECURITY,

INC

FOURTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP ATTENDEES

KELLY, JOHN C....cvvvovvvesessesse..JET PROPULSION LAB

KELLY, KIM R..cccvvvesessosoesnsse . IBM

KENNEDY, ELIZABETH A...............ROCKWELL INTERNATIONAL
KESTER, RUSHcvvevesess4s0.COMPUTER SCIENCES CORP.
KHAITAN, ANURAGceoseee2s4044+.UNIVERSITY OF MARYLAND
KICKLIGHTER, BOBc¢vs....NATIONAL LIBRARY OF MEDICINE
KILE, THOMASccecsceveessssss.DEPT. OF THE ARMY

KIMMINAU, PAMELA S.......«+:2:::4++.DEPT. OF DEFENSE
KIRKPATRICK, MARKCARLOW ASSOC.

KISHAN, SUSHMA¢c.cc000400¢.STANFORD TELECOMMUNICATIONS, INC.
KLEMM, DANIEL:..40s0005:0020...FORD AEROSPACE CO.

KNIGHT, JOHN C.....c0ceesseseesess.UNIVERSITY OF VIRGINIA
KOESER, KENccc0000s020s4.VITRO CORP.

KOPP, ALLANss¢cse5s533ss0ss.TELESOFT

KOUCHARDJIAN, ARA ..:e¢se¢seses4.,.UNIVERSITY OF MARYLAND
KRAHN, MARGIE:¢s4++...DEPT. OF DEFENSE

KRALY, KAREN¢ccs00eessees0...NATIONAL LIBRARY OF MEDICINE
KRAMER, NANCY¢¢¢eceeeess...PLANNING RESEARCH CORP.
KRAUS, PAUL J....vs4es0eeascesss..COMPUTATIONAL ENGINEERING, INC.
KRIEGMAN, DAVIDsscces400sq..SRA CORP.

KUDLINSKI, ROBERT A......:ccs0¢20...NASA/LARC

RUHN, RICKetsessesvsssesssss..NATIONAL BUREAU OF STANDARDS
KUNKEL, HENRY:4¢0¢cces.....BOEING AEROSPACE CO.

LABAUGH, ROBERT:..vve0.....MARTIN MARIETTA

LAL, NANDccie0eeessecsss0+.NASA/GSFC

LAMAS, NIKIc.cs0ecassse0s00..CENSUS BUREAU

LANDIS, LINDA¢¢¢tecess24.0...COMPUTER SCIENCES CORP.
LAVALLEE, DAVIDFORD AEROSPACE CO.

LEAKE, STEPHENcce00060¢0e0..NIST

LEE, JOHN A.....¢ceeveveusessesess.GENERAL DYNAMICS

LEHMAN, MANNY¢.¢cee0c02+.:.IMPERIAL COLLEGE

LEVAY, KAREN +ss9+e+..COMPUTER SCIENCES CORP.
LEVESON, NANCY G......cvvvvves +++. . UNIVERSITY OF CALIFORNIA
LEVITT, DAVID S...... e e ++++.COMPUTER SCIENCES CORP.
LIGHT, WARREN cessesssse...CTA, INC.

LIN, CHI Y...otteesuenssssersssssss .JET PROPULSION LAB
LITTLEWOOD, CHRISTOPHER ++++ .MARTIN MARIETTA

LIU, JEAN C...cccuevaacoassssnsesss.COMPUTER SCIENCES CORP.
LIU, KUEN-SAN¢c¢e0eess....COMPUTER SCIENCES CORP.
LOCKMAN, ABE:.ccs0ceessassas4.GTE

LOESH, BOB E.....:.v:ecccessss+4s++.JET PROPULSION LAB

LOTT, CHRIS vrrrecsssssssess IJNIVERSITY OF MARYLAND
LUCIER, ERNIE¢.ccceces....NASA/HEADQUARTERS
LUCZAK, RAY ..cvvvveevrsnensenss..COMPUTER SCIENCES CORP.
LYTTON, VICTOR H........v+v+v.u.+...DEPT. OF AGRICULTURE
LYU, MICHAEL sessssssseseees . BRONX COMMUNITY COLLEGE
LYU, MICHAEL R...:v:v:sssossesssses.JET PROPULSION LAB
LaMARSH, MARGOss0¢:ceve0.s..NASA/LARC

MACCHINI, BRUNOs¢.4.....UNIVERSITY OF MARYLAND
MADDOCK, KAREN R.......¢ete0ees....TECHNOLOGY PLANNING, INC.
MADSEN, KENT tveecsessssss .UNIVERSITY OF CALIFORNIA

§794

————

[T T T

FOURTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP ATTENDEES

MAGILL, ELEANORE Leceeesecansesses GENERAL ELECTRIC CORP.
MALAY, SUSAN ...ceccevveeeescsss..PLANNING ANALYSIS CORP.
MALLET BOB .esessesnsascncssssss.TECHNOLOGY PLANNING, INC.
MALTHOUSE NANCY ceeveesccaessess. LOGICON, INC.

MARKS, TOH sesssssssasessssssssss DEPT. OF DEFENSE
MARSHLICK MICHAEL ..:teses0sss+..COMPUTER SCIENCES CORP.
MARTINEZ, BILL .+esccscssesssssss..FPORD AEROSPACE CO.
MARTSCHENKO, WILLIAM N.............UNIVERSITY OF MARYLAND
MARVRAY, ESMONDveseses0+....NASA/GSFC

MATHIASEN, CANDYcteses0+0....UNISYS CORP.

MCCLURE, MARTY .¢:sscevsssssessss..BENDIX FIELD ENGINEERING CORP.
MCCOMAS, DAVIDevesesesesss---NASA/GSFC

MCDERMOTT, TIM .v:evessceasssssss..COMPUTER SCIENCES CORP.
MCDONALD, BETH ..:.:.vsvecssess+0...DEPT. OF DEFENSE
MCGARRY, FRANK ..+:.cccccssesesess NASA/GSFC

MCGARRY, PETER .+..sc000000s0004000..GENERAL ELECTRIC CORP.
MCGOWAN, CLEMENTc.¢s00.....CONTEL TECHNOLOGY CENTER
MCKENNA, JOHN J..:esesseesesessss..DEPT. OF DEFENSE

MCWEE, HARRYccecs22sss000...DEPT. OF DEFENSE

MEHLER, STEVE ...::-ceeesesecees...lIT RESEARCH INSTITUTE
MERIFIELD, JAMES .:.cccecesees.-..ADVANCED TECHNOLOGY, INC.

MICKEL, SUSAN .cccecsccness

..... .GENERAL ELECTRIC CORP.

MISHOE, JAMES P.....vvvvsesvessen..IIT RESEARCH INSTITUTE
MOLESKI, LAURAoovsvusseosssssCRMI

MOLESKI, WALT vevveevevesnosoncans NASA/GSFC

MOONEY, PATveeeveonesssnssess IBH

MORUSIEWICZ, LINDA M.....0.0c.s-....COMPUTER SCIENCES CORP.
MOYLEN, ALDEN ...cevvevecsssessss.COMPUTER SCIENCES CORP.
MUDRONE, JAMES +.....vevevcsss«<-.DEPT. OF DEFENSE

MULLER, ERICH0c0000000+....SPARTA, INC.
MUSA, JOHN D.......................AT&T BELL LABS

MYERS MONTGOMERY .cscesesssssss..UNISYS CORP.

MYERS, PHILIP T..ovvvescasns

NARROWS, BERNIE ..:esscceass
NICKENS, DON O..ccaveonnnons
NORCIO, TONY Foveeovnvereenns
NORO, MASAMIsvvecessas

O'BRIEN, DAVID .+evevevennces
O'BRIEN, ROBERT ...vvssoses
O'MALLEY, JAMESccooss
O'MALLEY, RUTH E¢vvvernonnss
OHLMACHER, JANE +eveeeesons

PAGE, GERALD ...vevcecacsas
PAJERSKI, ROSE +uevvcesnnos
PEARSON, BOYD «evrecevosons
PELNTK, TAMMY M...ccveocssas
PENNEY, LEONIE .0vecececonns
PEREZ, FRANK <eveeveoancnns
PERKINS, DOROTHY «.vcovnn..

...... COMPUTER SCIENCES CORP.

++....BENDIX FIELD ENGINEERING CORP.
«++...HARRIS SPACE SYSTEMS CORP.
«es0...UNIVERSITY OF MARYLAND

e UNIVERSITY OF MARYLAND

Ceeen CONCURRENT COMPUTER CO.
......NASA/GSFC

......HGO TECHNOLOGY

......HGO TECHNOLOGY

......SOCIAL SECURITY ADMINISTRATION

......COMPUTER SCIENCES CORP.
.e....NASA/GSFC
......NASA/GSFC

+ese...THE MITRE CORP.

......PENNEY ASSOCIATES
.....UNISYS CORP.
......NASA/GSFC

PETERSEN, JANE B....::voeessesss.s AUTOMETRIC, INC.

5794

—— YRR pp— Y]

FOURTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP ATTENDEES

PFLARTER, DAVE::svsesss.....MCDONNELL DOUGLAS CORP.
PIETRASANTA, ALcss0sss00...JET PROPULSION LAB

PLETT, MICHAEL E......vc-ssecss.....COMPUTER SCIENCES CORP.
PLUNKETT, THERESA ..:.:¢vvses+02....DEPT. OF DEFENSE

POLE, THOMAS:cccssssvsscssqss.SOFTWARE PRODUCTIVITY CONSORTIUM
POLLACK, JAY ..cccscersnssossssss.COMPUTER SCIENCES CORP.

PORTER, ADAM A.....cvssvevssesssss .UNIVERSITY OF CALIFORNIA

POTTER, WILLIAM¢ssc00+040-..NASA/GSFC

PRESSMAN, TOM¢..ces+.5....STRICTLY BUSINESS COMPUTER SYSTEMS
PRINCE, ANDY¢vvv0ess2:s+...PLANNING RESEARCH CORP.
PRISEKIN, JULIA ..::ssssssssss++0.1IT RESEARCH INSTITUTE

PUGH, DOUGLAS H.....v.c2vveeseeess..1IT RESEARCH INSTITUTE

PUMPHREY, KARENvvs2+4....COMPUTER SCIENCES CORP.

PURCELL, ELIZABETHTHE MITRE CORP.

PUTNEY, BARBARA¢.::¢c:......NASA/GSFC

QUANN, ETILEEN S...ccssesasssse0....FASTRAK TRAINING, INC.

RADOSEVICH, JIM+ss2v0......NASA/HEADQUARTERS

RANADE, PRAKASH V.......vvccs++.....COMPUTER SCIENCES CORP.

RANEY, DALE L....ccsssssssssessess.UNISYS CORP.

RAPP, DAVE ...c.cevccvunnns «+++.+..DEPT. OF DEFENSE

REDDING, JOHNcccvvvvcnccans DEFENSE COMMUNICATIONS AGENCY
REDDY, K G..v.vtcveevcessceecnsenas.VNG SOFTWARE CONSULTING SERVICES
RICHARD, DAN ...:¢¢svvevveessesss.IBM

RITTER, SHEILA J....cesveresss.....NASA/GSFC

ROBILLARD, PIERRE N......v0v0v.. ««..UNIVERSITY OF MONTREAL
ROBINSON, ALICE B.....:.cvvvvvvss . . . NASA/HEADQUARTERS
ROBINSON, STEVEvvv:s~+++++.DYNAMICS RESEARCH CORP.
RODA, A. C.tvrvennnnrancnsons ««++..PLANNING RESEARCH CORP.
ROGERS, KATHY ssessssesrsnss.THE MITRE CORP.
ROMBACH, DIETER H...........ccc. . .UNIVERSITY OF MARYLAND
ROTTERMAN, GENE cer e . .GENERAL DYNAMICS

ROY, DAN wesssssssssssesss . FORD AEROSPACE CO.
RUDOLPH, RUTH ...cccverttivecsoncns COMPUTER SCIENCES CORP.
SALASIN, JOHNcciveconnns «ee...GTE

SANDERS, ANTONIO:sse:4+...NASA/GSFC
SARY, CHARISSE ..c:teesceesssssss.COMPUTER SCIENCES CORP.

SAUBLE, GEORGE¢scese+>5+-+.OMITRON, INC.

SAVANH, VIRASACHcivevessss . .DEPT. OF LABOR

SCHEIDT, DAVE¢:veeenssvsss-00.1IT RESEARCH INSTITUTE
SCHELLHASE, RONALD J. vresrens e COMPUTER SCIENCES CORP.
SCHMIDT, SANDY ...c.envveves «++s+.BO0Z, ALLEN & HAMILTON, INC.

SCHULER, MARY P....................NASA/LARC
SCHWARTZ, BENJAMIN L........s+ss...THE ANALYTIC SCIENCES CORP.

SCOTT, STEVE citeescenens .. .UNISYS CORP.

SEAVER, DAVID P...........s ++sss..PROJECT ENGINEERING, INC.
SEIDEWITZ, ED ...vc:tesvnrersesses.NASA/GSFC

SELBY, RICHARD W....vveessvssrs++..UNIVERSITY OF CALIFORNIA AT IRVINE
SEVERINO, TONY:+:2+24..:..GENERAL ELECTRIC/RCA

SHANKLIN, ROBERT «ssnese.COMPUTER SCIENCES CORP.

SHAWE, M. ...ttt ceecrctocccsnonnnss BENDIX FIELD ENGINEERING CORP.

5794

A 1] 0

FOURTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP ATTENDEES

SHEKARCHI, JOHN¢¢csvs.....COMPUTER SCIENCES CORP.

SHEPPARD, SYLVIA B...:¢svsevv......NASA/GSFC

SHOAN, WENDY¢cccvve.e....NASA/GSFC

SIEGERT, GREG .::cescssssss-2.2.+-.1IT RESEARCH INSTITUTE

SILBERBERG, DAVID::.:++s+.+....NATIONAL COMPUTER SECURITY CENTER
SLACK, IKE st cecsocecsanncannns . - .MCDONNELL DOUGLAS ASTRONAUTICS CO.
SLEDGE, FRANKccccvesss0es+.GTE

SLOVIN, MAILCOIMCOMPUTER SCIENCES CORP.

SMITH, CASSANDRATHE MITRE CORP.
SMITH, GENEcevevvevees.....NASA/GSFC ,
SMITH, LAURIE veeeeeeecse.. . COMPUTER SCIENCES CORP.

SMITH, M C........¢-.vevnveeeess....THE MITRE CORP.

SMITH, OLIVER ..:.ccveesvvessesssq EG&G WASC, INC.

SMITH, PAUL H........cccvveessso...NASA/HEADQUARTERS

SO, MARIA ..¢.vccecrsvsssnssnsss. . MCDONNELL DOUGLAS SYSTEMS CCRP.
SOL-GUTIERREZ, ANA+ .FORD AEROSPACE CO.

SOLOMON, CARL¢cce0sss22+.....5ST SYSTEMS CORP.

SORKOWITZ, AL R...vsssscsss-e-+....DEPT. OF THE NAVY

SOVA, DON .ccvcvsvvccsaaresrsesssss NASA/JHEADQUARTERS

SPANGLER, ALANc:+vs552s05..IBM

SPENCE, BAILEYccccee- ++»+0...COMPUTER SCIENCES CORP.
SPIEGEL, DOUGvsess0+....NASA/GSFC

SQUIRE, JONevvvvevsssse...WESTINGHOUSE ELECTRIC CORP.
SQUIRES, BURTON E......veveuuv0es0+..CONSULTANT

STAFFORD, BRUCE:vs+2ss:+54.IRS

STALLARD, JOHN¢svsssss4:...DEFENSE COMMUNICATIONS AGENCY
STARK, MICHAELccsssse+s+2+:.NASA/GSFC

STEGER, WARRENc::0:4000:4+4.COMPUTER SCIENCES CORP.

STEINBACHER, JODYNASA/JPL -

STICKLE, RICHARDeccsee0s..HEI

STOKES, EDcccecuue sssssesves . COMPUTER SCIENCES CORP.
STRAUB, PABIOvctess2+...UNIVERSITY OF MARYLAND
STUART, ANTOINETTE D....cvevvenn ...DEPT. OF THE NAVY

SUD, VEDc:.. eessssssess.THE MITRE CORP.

SUN, ALICE eessssesssasses . THE MITRE CORP.

SWALTZ, LEONvvccecnvecens .+.IBM

SZULEWSKI, PAULsssese2s:+2..C. S. DRAPER LAB, INC.
TANG, Y. Kevvveveosensessnsnsnsses. FORD AEROSPACE CO.
TASARI, KEIJI:evvsvsenseesss .NASA/GSFC

TAUSWORTHE, BOB::sssssss+s.:.NASA/TJPL

TAVASSOLI, NAZ:csve2055+...COMPUTER SCIENCES CORP.
TAYLOR, GUYFLEET COMBAT DIRECTION SYSTEMS
THACKREY, KENTcccccsss0+....PLANNING ANALYSIS CORP.
THOMAS, DONNA e+es++..COMPUTER SCIENCES CORP.
THOMPSON, JOHN T... +2cesvssses+0...FORD AEROSPACE CO.
THORNTON, THOMASccvessese0...NASA/TJPL

THREADGILL, PETERssevss.....DEPT. OF DEFENSE

TIAN, JIANHUI:s000vees-0..+.UNIVERSITY OF MARYLAND
TRAYSYELUE, WEISNER¢:.....COMPUTER SCIENCES CORP.
TRUSZKOWSKI, WALT F....ecv00ceee...NASA/GSFC

TZENG, NIGL ..¢cicscvacesnrsenssss.NASA/STX

5794

FOURTEENTH ANNUAL SOFTWARE ENGINEERING WORKSHOP ATTENDEES

ULERY, BRADFORDcc0c0vsee0...UNIVERSITY OF MARYLAND
ULIMAN, RICHARDss000s00...ST SYSTEMS CORP.
URBINA, DANIEL ..:.eccceessssses...FORD AEROSPACE CO.

URR, CLIFFORDcccveocesveses...PLANNING ANALYSIS CORP.

VALETT, JON ..vccseessoesscssssss.NASA/GSFC

VALETT, SUSAN ...ccvcesesceessss..NASA/GSFC

VANDERGRAFT, JAMES S.....:¢+s00c.....COMPUTATIONAL ENGINEERING, INC.
VAUGHAN, JOEcceveocessesssssSOCIAL SECURITY ADMINISTRATION
VEHMEIER, DAWN R.....¢ccvvecce.....0ASD(P&L)WSIG

VERNACCHIO, ALcceneee sessese . NASA/GSFC

VIENNEAU, ROBERT¢.cess0+..+.-KAMAN SCIENCES CORP.

VOIGT, DAVID ...¢.¢ccesvvvssssss+..-BENDIX FIELD ENGINEERING CORP.
VOIGT, SUSAN ... cccersccscncsns . «NASA/LARC

VUOLO, BOBc:ccvvvsoessevsesss .NASA/TJPL

WALIGORA, SHARON R...c¢vvcevveese..COMPUTER SCIENCES CORP.
WALKER, GARY N...¢.veccev:eess-2.....JET PROPULSION LAB
WALKER, JOHNc¢:es+c0e:+:..1IT RESEARCH INSTITUTE

WALL, TIM .vvevecencnnnnns «.v.....SPARTA, INC.

WALLACE, DOLORES ..v.vvveevennns . .NATIONAL INSTITUTE OF STANDARDS & TEC
WARTIK, STEVENc.vece....SOFTWARE PRODUCTIVITY CONSORTIUM
WATSON, BARRYeevevnssss.IIT RESEARCH INSTITUTE

WAUGH, DOUG +vvvvvvvnosnnrnnnsIBM

WEBSTER, THOMAS M..................COMPUTATIONAL ENGINEERING, INC.
WEEKLEY, JIM ...v....cvevvevess...FORD AEROSPACE CO.

WEISMAN, DAVID ...ovuevvuennnUNISYS CORP.

WEISS, DAVE ...ccceseeenssssnsssss SOFTWARE PRODUCTIVITY CONSORTIUM
WENDE, CHARLES ...¢:cctevsss-+55+.NASA/GSFC
WENDE, ROY:.cccesss0e-0ss22++-FAIRCHILD SPACE CO.

WESTON, WILLIAM ceversess .NASA/GSFC

WHITESELL, STEVEN A..... +essrssse. . COMPUTER SCIENCES CORP.
WILBERT, CARL K....ovvvevvevoresnss . NASA/JHEADQUARTERS
WILDER, DAVID C........... «++sss...DEPT. OF DEFENSE
WILLIAMS CHERYL ...vvvenvecvonnsse CTA, INC.

WILSON, BILL M.ecivesereonsersesnees.QUONG ASSOC.

WILSON, RUSSELL ..evcvess «ssees...BOEING AEROSPACE CO.
WITTIG, MIKE:.cccsse0vees++..1IT RESEARCH INSTITUTE
WONG, ALICE A.....cscscvevsss-s....FEDERAL AVIATION AGENCY

WONG, WILLIAMcccs0ssv+0-5..NATIONAL INSTITUTE OF STANDARDS & TEC
WOOD, DICKscscssesssvsssssse..COMPUTER SCIENCES CORP.
WOOD, TERRI ..cececveesessssssssas.NASA/GSFC

YANG, CHAO ceseene «+.+..NASA/GSFC
YOUMAN, CHARLES «esees...THE MITRE CORP.

ZAVELER, SAUL¢csv000s05e00.s+.0.5. ATR FORCE
ZAWILISKI, TONY:.cesvees-.-.+.THE MITRE CORP.

ZELKOWITZ, MARV eesss...UNIVERSITY OF MARYLAND

ZIMET, BETH ssssseessssssss s COMPUTER SCIENCES CORP.

ZIMMER, JANET¢0... «ssss++..1IIT RESEARCH INSTITUTE
A9

§794

"

-’

APPENDIX B — SEL BIBLIOGRAPHY

5794

(L3

W Temwn

I T

NI

The technical papers, memorandums, and documents listed in
this bibliography are organized into two groups. The first
group is composed of documents issued by the Software Engi-
neering Laboratory (SEL) during its research and development
activities. The second group includes materials that were
published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engi-
neering Workshop, August 1976

SEL-77-002, Proceedings From the Second Summer Software En-
gineering Workshop, September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton
and S. Zeldin, September 1977

SEL-77-005, i ifi i
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-005, Proceedings From the Third Summer Software Engi-
neering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Requirements
Ang_zg;g_ﬁ;gdz P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP)
Hiﬂl_i_ﬁnlﬂﬂ_iBELASAQn_ll _

, W. J. Decker and W, A. Taylor,
July 1986

SEL-79-002, The Software Engineering Laboratory: Relation-
ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System

_gsgLlet_gn_i_d_uggs_ﬁ_ﬁu;dg C. E. Goorevich, A. L. Green,
and S. R. Waligora, August 1979

SEL-79- 004 Evaluation of t g Caine, Eg;bg . and GQ dgn Pro-

h a r

LQSESl_Cgdg_5&Q_Sgﬁt_gzg__gslggﬁznzlggnmegt, C. E. Goorev1ch

A. L. Green, and W. J. Decker, September 1979

B-1
9913

(L)

SEL-79-005, P i
gineering Workshop, November 1979

SEL-80-002, Multi-Level Expression Design Lanquage-

Regn1remen&_Le_e1_iMEDL_Bleﬁxisem_E_aluitlgn W. J. Decker
and C. E. Goorevich, May 1980 .

SEL-80-003,

Software System (MMsLﬁssS1_5Lﬁ;e_gﬁ_Lhe_Arr_Qg_puLer_§x5Le_§L
Compatibility tudv, T. Welden, M. McClellan, and

P. Liebertz, May 1980
SEL-80-005, A_§LudX_Qﬁ_I_Q_Mu§§_BﬁlliblllLX_MQQ§_:

A. M, M111er, November 1980

SEL-80-006, 2rQgeed1ngs_E1gnLJ3uLJELt:h_Annual_Sgitﬂare_Engl_
neerrng_ﬂnrkshgg November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estimatjion
Mgdels_fgr_sgﬁt_arg_stsgmﬁ. J. F. Cook and F. E. McGarry,
December 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook ‘and E, Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Work-
bengh_2n353_;_Ex§luarlgn W. J Decker and F. E. McGarry,
March 1981 -

SEL-81-011, Evaluating Software Development by Analysis of
Change Data, D. M. Weiss, November 1981

SEL 81-012,

G;’O' Plcasso,WDecember 1981

SEL-81-013, Proceedings From the Sixth Annual Software Enqgi-
negrigg_ﬂgrxs_gg December 1981

SEL 81- 014, AntgmaLed_Q9ll3gt1gn_g£_Egﬁt_;;e_Englneerlng_Da;i

. A. L, Green, -
W. J. Decker, and F. E, McGarry, September 1981))

SEL-81-101, Gui , V. E. Church,
D. N, Card, F. E. McGarry, et al., Augqust 1982 -

SEL-81-104, Ih9_5Qit_ﬁ1E*E_QLDQQLLQQ_LQQQLQLQ_I D. N. Card,
F. E. McGarry, G. Page, et al., February 1982 :

9913

— Sn——

SEL-81-107, W i ! r
of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,
February 1982

SEL-81-110, Evaluation of an Independent Verjification and

Validation (IV&V) Methodology for Flight Dynamics, G. Page,
F. E. McGarry, and D. N. Card, June 1985

SEL-81-205, Recommended Approach to Software Development,
F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Evaluation of Management Measures of Software
Development, G. Page, D. N. Card, and F. E. McGarry,
September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Vol-
ume 1, July 1982

SEL-82-007, Proceedings From the Seventh Annual Software
Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of
QMM&&MM@.&AQM,

V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, MM&M@
(SAP) System Description (Revision 1), W. A, Taylor and

W. J. Decker, April 1985

SEL-82-105, w nqgij in

Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

SEL-82-806, An a ibliograph ftwar ineerin
Laboratory Literature, M. Buhler and J. Valett, November 1989

SEL-83-001, An Approach to Software Cost Estimation,
F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,
D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, war ngi in apers:; Vol-
ume II, November 1983

SEL-83-006, ni in W Developmen h nami
Variables, C. W. Doerflinger, November 1983

SEL-83-007, Pr in m the Eigh Annual Softwar
gineering Workshop, November 1983

9913

SEL-83-106, i n
variables (Rev is;gn 1), C. w Doerfllnger, November 1989

SEL-84-001, ' W v
W. W. Agresti, F. E. McGarry, D. N. Card, et al., Apr11 1984

SEL-84-003, v i i ifi i M
w i i r , W. W. Agresti,
V. E. Church, and F. E. McGarry, December 1984

SEL-84-004,] lings Fron
neering WQrksth November 1984
SEL-85-001, A_Qgmgarisgg_Qi_SQi;ﬂare,!erifigesign_leghg;gneﬁ

D. N. Card, R. W. Selby, Jr., F. E. McGarry, et al., April
1985

SEL-85-002, ining Ev i ymmendat i m
\'4 v , R. Murphy
and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Vol-
ume III, November 1985

SEL-85- 004,TﬁialniLiQ_s_gﬁ_sgﬁL_ére:ieghngiegieer_;iesriagr
QLEAHBQQML_QQQ_MQLLLQE R. W. Selby, Jr., May 1985

SEL-85-005, Software Verification and Testing, D. N. Card,
C. Antle, and E. Edwards, December 1985

SEL-85-006, Proceedings From the Tenth Annual Software Engi-
neering Workshop, December 1985

SEL-86-001, P r's Han r Flight D
ware Development, R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development,
E. Seidewitz and M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development En-
vironment Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, CQllQQ33Q*SQiL=iLQ,E_QLBQELLDQ_E§B§£§4___QI_
ume IV, November 1986

SEL-86- 005 Measuring SQ t are Design, D. N. Card, October
1986 : :

SEL-86-006, i From th venth Ann ftw
Eng;neerrng__gr_i_gg December 1986

9913

SEL-87-001,

Product Assurance Policies and Procedures for
El1ghL_Qxnamigs_sgﬁtuaxg_ne_glgpmen; S. Perry et al., March

1987

SEL-87-002, Ada Style Guide (Version 1,1), E. Seidewitz

et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specifica-
tion Model (CSM), W. W. Agresti, June 1987

SEL-87-004, Assessing the Ada Design Process and Its Impli-
i : + S. Godfrey, C. Brophy, et al.,
July 1987

SEL-87-008, i
Database, G. Heller, October 1987

SEL-87-009, Collected Software Engineering Papers: Volume V,

S. DeLong, November 1987

SEL-87-010, Proceedings From the Twelfth Annual Software En-

gineering Workshop, December 1987

SEL-88-001, i i i
QRQQI_&;udx J. Seigle, L. Esker, and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Vol-

ume VI, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynam-
i A : i h Analysis, K. Quimby and L. Esker,
December 1988

SEL-88-004, Proceeding of the Thirteenth Annual Software

Engineering Workshop, November 1988
SEL-88-005, Proceedings of the First NASA Ada User's Sympo-

sium, December 1988

SEL-89-002, i T ti
Q_QQX_&LQQX S. Godfrey and C. Brophy, September 1989
SEL-89-003, w Management Environ ' n

and Architecture, W. Decker and J. Valett, August 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dvy-
nami rea: Implemen ion/T ing Ph Analysi

K. Quimby, L. Esker, L. Smith, M. Stark, and F. McGarry,
November 1989 ' '

9913

L T T

v

SEL-89-005, Lessons Learned in the Transitijon to Ada From

FORTRAN at NASA/Goddard, C. Brophy, November 1989
SEL-89-006, Collected Software Engineering Papers: Vol-
ume VII, November 1989

SEL-89-007, i urtee
Engineering Workshop, November 1989

SEL-89-008, E1QQQQd__Qi_Qi_LJiJE%ZLJLJLjEL_Qé_QEQ_ﬁ__ﬁlmEQ_
sium, November 1989

SEL-89- 101 ftwar ineering r E D
i igi 1), M. So, G. Heller,

S. Stelnberg, K. Pumphrey, and D. Spiegel, February 1990

SEL-90-001, Database Access Manager for the Software Engi-
neering Laboratory (DAMSEL) User's Guide, M. Buhler and

K. Pumphrey, April 1990
'LATED LITE

4pgresti, W. W., V. E. Church, D. N. Card, and P. L. Lo,
"Designing With Ada for Satellite Simulation: A Case Study,"
Proceedings of the First International Symposium on Ada for

the NASA sgggg Station, June 1986

2Agrest1, W. W., F. E. McGarry, D. N Card et al., "Meas-
uring Software Technology," Program Trangfgrmg;ign and Pro-
gramming Envirgnmgn;s. "New York: Springer-Verlag, 1984

1Balley, 'J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures,” Pr oceedings of the
Fifth International Conference on Software Engineering.

New York: IEEE Computer Society Press, 1981

7Basili, V. R., intenance = R -Oriente
Development, University of Maryland, Technical Report
TR-2244, May 1989

lgasili, V. R., "Models and Metrics for Software Manage-

ment and Engineering," ASME Agvgnggs in Computer Technology,
January 1980, vol. 1

7835111, V R ftware D v lmr.
Future, Unlver51ty of Maryland, Techn1ca1 Report TR-2263,
June 1989 _ __ . T

Basili, V. R., Iutgrigl on Mgdgls and Metrics for Software
n men Engin in New York: IEEE Computer Society

Press, 1980 (also de51gnated SEL-80-008)

B-6
9913

o

3Basill, V. R., 'Quant1tative Evaluatlon of Software Meth-
odology.," m n—

ference, September 1985

lpasili, V. R., and J. Beane, "Can the Parr Curve Help With
Manpower Distribution and Resource Estimation Problems?,*

Journal of Systems and Software, February 1981, vol. 2, no. 1

lpasili, V. R., and K. Freburger, *Programming Measurement
and Estimation in the Software Engineering Laboratory,"

Journal of Systems and Software, February 1981, vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relation-
ships Between Effort and Other Variables in the SEL,"

. ol w =
plications Conference, October 1985
4Basili, V. R., and D. Patnaik, A Study on Fault Prediction

, University
of Maryland, Technical Report TR-1699, August 1986

28a5111, V. R., and B. T. Perricone, "Software Errors and
Complexity: An Empirical Investigation,"™ Communications of
the ACM, January 1984, vol, 27, no. 1

l1Basili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
h b i Workshop: -

ity Metrics, March 1981

Basili, V. R., and J. Ramsey, Structural Coverage of Func-
tional Testing, University of Maryland, Technical Report
TR-1442, September 1984

3Basili, V. R., and C. L. Ramsey, "ARROWSMITH-P--A Proto-
type Expert System for Software Englneer1ng Management .

TR T m nmen
Symposium, October 1985

Basili, V. R., and R. Reiter, "Evaluating Automatable MeasS-

ures for Software Development,” Proceedings of the Workshop
nti iv w iabili 1
and Cost. New York: IEEE Computer Society Press, 1979

5Basili, V., and H. D. Rombach, "Tailoring the Software
Process to Pro;ect Goals and Env1ronments, Proceedings of
rnation nferen ftwar ngineering,

March 1987

B-7
9913

| i W1

5Basili, V., and H. D. Rombach, "T A M E: Tailoring an Ada
Measurement Environment," Proceedings of the Joint Ada Con-
ference, March 1987

SBasili, V., and H. D. Rombach, "T A M E: Integrating
Measurement Into Software Environments," University of

Maryland, Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project:
Towards Improvement -Oriented Software Environments," IEEE

Transactions on Software Engineering, June 1988
7Basili, V. R., and H. D. Rombach, Towards A Comprehensive

war v
Environment, Unlver51ty of Maryland Technical Report
TR-2158, December 1988

2Basili, V. R., R. W. Selby, Jr., and T. Phillips, "Metric
Analysis and Data Validation Across FORTRAN Projects,” IEEE

Transactions on Software Engineering, November 1983

3Basili, V. R., and R. W. Selby, Jr., “Calculation and Use
of an Environments's Characteristic Software Metric Set,”

. " £ _
ware Engineering. New York: IEEE Computer Society Press,
1985

Basili, V. R., and R. W. Selby, Jr., m i h ive-

ness of Software Testing Strategies, University of Maryland,
Technical Report TR-1501, May 1985

3Basili, V. R., and R. W. Selby, Jr., "“Four Applications
of a Software Data Collection and Analysis Methodology," Pro-

ceedings of the NATO Advanced Study Institute, August 1985

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Ex-
perimentation in Software Engineering,*]IEEE Transactions on
Software Engineering, July 1986

5Basili, V. and R. Selby, Jr., “Comparlng the Effective-
ness of Software Testing Strategies,” IEEE Transactions on
Software Engineering, December 1987

2Basili, V. R., and D. M. Weiss, A Methodology for Collecting
!3l1g_SQﬁt_gzg_Egglnggxing_Data, University of Maryland,

Technical Report TR-123%, December 1982

3ba$ili, V. R., and D. M. Weiss, "A Methodology for Collect-
ing Valid Software Engineering Data," nsaction n

Software Engineering, November 1984

9913

lgasili, V. R., and M. V. Zelkowitz, "The Software Engi-
neering Laboratory: Objectives," Proceedings of the Fif-
teenth Annual Conference on Computer Personnel Research

m ’
August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

lpasili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second Soft-
ware Life Cycle Management Workshop, August 1978

lgasili, V. R., and M. V. Zelkowitz, “Measuring Software
Development Characteristics in the Local Environment,"* Com-

puters and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-

tional Conference on Software Engineering. New York: IEEE
Computer Society Press, 1978

5Brophy, C., W. Agresti, and V. Basili, "Lessons Learned
in Use of Ada-Oriented Design Methods," Proceedings of the
Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili,
"Lessons Learned 1n the Implementatlon Phase of a Large Ada
Project,” he W A hni =
ference, March 1988

2card, D. N., “Early Estimation of Resource Expenditures and
Program Size," Computer Sciences Corporation, Technical Memo-
randum, June 1982

2card, D. N., “Comparison of Regression Modeling Techniques
for Resource Estimation,” Computer Sciences Corporation,
Technical Memorandum, November 1982

3Card, D. N., "A Software Technolbgy Evaluation Program,"
nqr n for ica,
October 1985

5card, D., and W. Agresti, "Resolving the Software Science

Anomaly," n m ware, 1987

6Card, D. N., and W. Agresti, "Measuring Software Design

Complexity," Th n f ems an oftware, June 1988
B-9

9913

| i

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan,
"A Software Engineering View of Flight Dynamics Analysis
System,* Parts I and II, Computer Sciences Corporation,
Technical Memorandum, February 1984

4card, D. N., V. E. Church, and W. W. Agresti, "An Empirical
Study of Software Design Practices, IEEE Transactions on
Software Engineering, February 1986

Card, D. N., Q. L. Jordan, and V. E. Church, *Characteris-
tics of FORTRAN Modules,® Computer Sciences Corporation,
Technical Memorandum, June 1984

5card, D., F. McGarry, and G. Page, "Evaluating Software
Engineering Technologies,” IEEE Transactions on Software
Engineering, July 1987

3card, D. N., G. T. Page, and F. E., McGarry, “"Criteria for

Software Modularization,”™ Proceedings of the Eighth Interna-
w i ing. New York: IEEE

Computer Society Press, 1985

lchen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To
Evaluate Software Eng1neering Methodologies,” Proceedings of

W nqgi ri .
New York: IEEE Computer Society Press, 1981

4church, V. E., D. N. Card, W. W. Agresti, and Q. L. Jordan,
*An Approach for Assessing Software Prototypes," ACM Software
Engineering Notes, July 1986

2poerflinger, C. W., and V. R. Basili, "Monitoring Software
Development Through Dynamic Variables, " Proceedings of the
Seventh International Computer Software and Applications
Conference. New York: IEEE Computer Society Press, 1983

Spoubleday, D., "ASAP: An Ada Static Source Code Analyzer
Program,” University of Maryland, Technical Report TR-1895,
August 1987 (NOTE: 100 pages long)

6Godfrey, S., and C. Brophy, "Experiences in the Implemen-
tation of a Large Ada Project," Proceedings of the 1988
Washington Ada Symposium, June 1988

Hamilton, M., and S. Zeldin, A Demonstration of AXES for
NAVPAK, Higher Order Software, Inc., TR-9, September 1977
(also des1gnated SEL-77-005)

Jeffery, D. R.,,and v. Ba5111, an;ag;g;i;;g; Bgsgurgg Data:
i Data, University
of Maryland, Technical Report TR-1848, May 1987

B-10
9913

6Jeffery, D. R., and V. R. Basili, "Va11dat1ng the TAME Re-—
source Data Model," Pr h nation

Conference on Software Engineering, Aprll 1988
SMark, L., and H. D. Rombach, A Meta Information Base for

Software Engineering, University of Maryland, Technical Re-
port TR-1765, July 1987

6Mark, L., and H. D. Rombach, "Generating Customized Software
Engineering Information Bases From Software Process and Prod-

uct Specifications,” Proceedings of the 22nd Annual Hawaii
International Conference on System Sciences, January 1989

SMcGarry, F., and W. Agresti, "Measuring Ada for Software
Development in the Software Engineering Laboratory (SEL),"
. w L > n_

ference on System Sciences, January 1988

7McGarry, F., L. Esker, and K. Quimby, "Evolution of Ada
Technology in a Production Software Env1ronment,

Washi WADA June 1989

3McGarry, F. E., J. Valett, and D. Hall, "Measuring the
Impact of Computer Resource Quality on the Software Develop-

ment Process and Product," Proceedings of the Hawaiian Inter-
national Conference on System Sciences, January 1985

National Aeronautics and Space Administration (NASA), NASA

Software Research Technologqy Workshop (Proceedings), March

1980

3Page, G., F. E. McGarry, and D. N. Card, "A Practical Ex-
perlence With Independent Ver1f1cat10n and Validation,"

hth In n m ftwar
and Applications Conference, November 1984
SRamsey, C., and V. R. Basili, v i -
w ngi ri M ment, University of

Maryland, Technical Report TR-1708, September 1986

3Ramsey, J., and V. R. Basili, "Analyzlng the Test Process
051ng Structural Coverage,“ hth r—
n ren ftw ineering. New York:

IEEE Computer Society Press, 1985

SRombach, H. D., "A Controlled Experiment on the Impact of
Software Structure on Maintainability," IEEE Transactions on
Software Engineering, March 1987

11

o
}

9913

W

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment
of Maintenance: An Industrial Case Study," Proceedings From

Lhg_Qggig:g_gg_gn_sgﬁtﬂgzg_M§lgsgn1_ge September 1987

6Rombach, H. D., and L. Mark,”"Software Process and Prod-
uct Specifications: A Basis for Generating Customized SE
Information Bases,"” Proceedings of the 22nd Annual Hawaii
InLg1ga;;9nﬁ1_QgnﬁgLgngg_gg_52§t§m_§g_§_g§§ January 1989

7TRombach, H. D., and B, T. Ulery, Establishing a Measure-

ment_ﬂasgg_Malntgna_gg_lmngygmgQL_R_Qgggm;__Lgﬁﬁg_a_LegLngg
in the SEL, University of Maryland, Technical Report

TR-2252, May 1989

5seidewitz, E., "General Object-Oriented Software Develop-
ment: Background and Experience," Proceedings of the 21st
Hawaii International Conference on System Sciences, January

6seidewitz, E., "General Object-Oriented Software Develop-
ment with Ada: A Life Cycle Approach," Pr in f th

CASE Technology Conference, April 1988

6seidewitz, E., 'Object—Orlented Programm1ng in Smalltalk

and Ada,” n nf n -
\j m nd A ions,

October 1987

4Se1dew1tz, E., and M. Stark, »Towards a General Object-
Oriented Software Development Methodology,"” Proceedings of

) , rnation m ium A f he NASA
Station, June 1986 ' '
7Stark;'ﬁfﬂE. and E. meﬁabth "Usindfiagmtd Mazimize
Verbatim Software Reuse," Proceedings of TRI-Ada 1989,
October 1989

Stark, M., qgg E. Se1dew1tz,7“T9wa;ds a General Object-

Oriented Ada Lifecycle," Pr adin f A -

ference, March 1987

7Sunazuka. T., and V. R. Basili, In in p—
w n m m,

University of Maryland, Technical Report TR-2289, July 1989
Turner, C., and G. Caron, A mparison of A/SEL

Software Development Data, Data and Analysis Center for
Software, Special Publication, May 1981

9913

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-—
dium, Data and Analysis Center for Software, Special Publi-
cation, April 1981

Svalett, J., and F. McGarry, “"A Summary of Software Measure-
ment Experlences in the Software Engineerlng Laboratory,

ence on System Sciences, January 1988

3weiss, D. M., and V. R. Basili, ®"Evaluating Software De-
velopment by Analysis of Changes: Some Data From the Soft-
ware Engineering Laboratory," IEE ran ion n f r

Engineering, February 1985

5Wu, L., V. Basili, and K. Reed, "A Structure Coverage Tool
for Ada Software Systems,” Proceedings of the Joint Ada Con-
ference, March 1987

1zelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects,” i

i n m ience. New York:
IEEE Computer Society Press, 1979

2zelkowitz, M. V., "Data Collection and Evaluation for Ex-
perimental Computer Science Research," Empirical Foundations

for Computer and Information Science (proceedings),
November 1982

6Zelkowitz, M. V., "The Effectiveness of Software Proto-

typing: A Case Study," Pr in £f th nn Tech-
nj i he Washington, D ha r he ACM
June 1987

6Zelkowitz, M. V., "Resource Utilization During Software

Development, " Journal of Systems and Software, 1988

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility," Proceedings of the Soft-
ware Life Cycle Management Workshop, September 1977

NOTES:

lThis article also appears in SEL-82-004, Collected Soft-
ware Engineering Papers: Volume I, JulY 1982.

2This article also appears in SEL-83-003, 1 ft-
ware Engineering Papers: Volume II, November 1983.

3This article also appears in SEL-85- 003, Collected Soft-
ware Engineering Papers: Volume III, November 1985.

9913

T

4This article also appears in SEL—864004, ggllgg;gd_SQﬁtz
ware Enaineering Papers: Volume IV, November 1986.

SThis artlcle also appears in SEL-87-009, Collected Soft-

ware Engineering Papers: Volume V, November 1987.

6Th1s article also appears in SEL-88-002, Collected Soft-
A4 ., November 1988.

7This article also appears in SEL-89-006, Collected Soft-
ware Egg;ggg;;ng Papers: Volume VII, November 1989.

9913

L

